zoukankan      html  css  js  c++  java
  • poj 1149 -- PIGS

    PIGS
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 15747   Accepted: 7034

    Description

    Mirko works on a pig farm that consists of M locked pig-houses and Mirko can't unlock any pighouse because he doesn't have the keys. Customers come to the farm one after another. Each of them has keys to some pig-houses and wants to buy a certain number of pigs.
    All data concerning customers planning to visit the farm on that particular day are available to Mirko early in the morning so that he can make a sales-plan in order to maximize the number of pigs sold.
    More precisely, the procedure is as following: the customer arrives, opens all pig-houses to which he has the key, Mirko sells a certain number of pigs from all the unlocked pig-houses to him, and, if Mirko wants, he can redistribute the remaining pigs across the unlocked pig-houses.
    An unlimited number of pigs can be placed in every pig-house.
    Write a program that will find the maximum number of pigs that he can sell on that day.

    Input

    The first line of input contains two integers M and N, 1 <= M <= 1000, 1 <= N <= 100, number of pighouses and number of customers. Pig houses are numbered from 1 to M and customers are numbered from 1 to N.
    The next line contains M integeres, for each pig-house initial number of pigs. The number of pigs in each pig-house is greater or equal to 0 and less or equal to 1000.
    The next N lines contains records about the customers in the following form ( record about the i-th customer is written in the (i+2)-th line):
    A K1 K2 ... KA B It means that this customer has key to the pig-houses marked with the numbers K1, K2, ..., KA (sorted nondecreasingly ) and that he wants to buy B pigs. Numbers A and B can be equal to 0.

    Output

    The first and only line of the output should contain the number of sold pigs.

    Sample Input

    3 3
    3 1 10
    2 1 2 2
    2 1 3 3
    1 2 6

    Sample Output

    7

    题意:有一养猪场,有m个猪圈,给出每个猪圈中猪的数量,来了n个买主,每个买主手中有若干猪圈的钥匙,且给出每个买主想要买多少猪。问,最多能卖出多少头猪。

    思路:网络流最大流问题。第二个最大流的题目,建图比较麻烦。下面说说我的建图方式。

      1. 我们将所有买主当成结点。那么除了买主外,还需两个点,一个源点一个汇点。我称之为supers,supert.
      2. 将源点与每个猪圈的第一个买主建边,如有重复的可并,实现的时候我是用flag[]数组标记钥匙是否第一次出现,如果是则可建边,否则看 step 3.
      3. 如果不是第一次出现,说明在这个买主之前有买主买猪。这时,在这两个买主之间建边,权值(也就是容量)为INF。实现时是用nodes[]数组记录前一个买主。
      4. 将每个买主连向汇点。容量为次买主要买的猪数。

      我的建图方式就是这样。。建完图后用Dinic 求解。

      1 /*======================================================================
      2  *           Author :   kevin
      3  *         Filename :   PIGS.cpp
      4  *       Creat time :   2014-07-20 15:11
      5  *      Description :
      6 ========================================================================*/
      7 #include <iostream>
      8 #include <algorithm>
      9 #include <cstdio>
     10 #include <cstring>
     11 #include <queue>
     12 #include <cmath>
     13 #define clr(a,b) memset(a,b,sizeof(a))
     14 #define MaxM 1005
     15 #define MaxN 105
     16 #define INF 0x7f7f7f7f
     17 using namespace std;
     18 struct Edge{
     19     int from,to,cap,flow;
     20 };
     21 vector<Edge> edges;
     22 vector<int>G[MaxN];
     23 bool vis[MaxN];
     24 int d[MaxN],cur[MaxN],supers,supert;
     25 bool BFS()
     26 {
     27     clr(vis,0);
     28     queue<int>Q;
     29     Q.push(supers);
     30     d[supers] = 0;
     31     vis[supers] = 1;
     32     while(!Q.empty()){
     33         int x = Q.front(); Q.pop();
     34         int len = G[x].size();
     35         for(int i = 0; i < len; i++){
     36             Edge& e = edges[G[x][i]];
     37             if(!vis[e.to] && e.cap > e.flow){
     38                 vis[e.to] = 1;
     39                 d[e.to] = d[x]+1;
     40                 Q.push(e.to);
     41             }
     42         }
     43     }
     44     return vis[supert];
     45 }
     46 int DFS(int x,int a)
     47 {
     48     if(x == supert || a == 0) return a;
     49     int flow = 0,f;
     50     int len = G[x].size();
     51     for(int& i = cur[x]; i < len; i++){
     52         Edge& e = edges[G[x][i]];
     53         if(d[x] + 1 == d[e.to] && (f = DFS(e.to,min(a,e.cap-e.flow))) > 0){
     54             e.flow += f;
     55             edges[G[x][i]^1].flow -= f;
     56             flow += f;
     57             a -= f;
     58             if(!a) break;
     59         }
     60     }
     61     return flow;
     62 }
     63 void AddEdge(int from,int to,int cap)
     64 {
     65     edges.push_back((Edge){from,to,cap,0});
     66     edges.push_back((Edge){to,from,0,0});
     67     int m = edges.size();
     68     G[from].push_back(m-2);
     69     G[to].push_back(m-1);
     70 }
     71 int Dinic(int s,int t)
     72 {
     73     int flow = 0;
     74     while(BFS()){
     75         clr(cur,0);
     76         flow += DFS(s,INF);
     77     }
     78     return flow;
     79 }
     80 int main(int argc,char *argv[])
     81 {
     82     int n,m,keys,k;
     83     int pighome[MaxM],  //猪圈中猪的数量
     84         nodes[MaxM],    //前一个买主的信息
     85         flag[MaxM];     //标记是否是买猪第一人
     86     while(scanf("%d%d",&n,&m)!=EOF){
     87         clr(pighome,0);
     88         clr(nodes,0);
     89         clr(flag,0);
     90         supers = 0;
     91         supert = m+1;
     92         for(int i = 1; i <= n; i++)
     93             scanf("%d",&pighome[i]);
     94         for(int i = 1; i <= m; i++){
     95             int sum = 0;
     96             scanf("%d",&keys);  //钥匙的数量
     97             for(int j = 0; j < keys; j++){
     98                 scanf("%d",&k);
     99                 if(!flag[k]){
    100                     sum += pighome[k];  //合并重边
    101                     flag[k] = 1;
    102                 }
    103                 else{
    104                     if(nodes[k]){
    105                         AddEdge(nodes[k],i,INF); //建买主之间的边
    106                     }
    107                 }
    108                 nodes[k] = i;
    109             }
    110             AddEdge(supers,i,sum);  //添加合并后的边
    111             int buy;
    112             scanf("%d",&buy);
    113             AddEdge(i,supert,buy);  //建立买主到汇点的边
    114         }
    115         int ans = Dinic(supers,supert);
    116         printf("%d
    ",ans);
    117         edges.clear();
    118         for(int i = 0; i < MaxN; i++)
    119             G[i].clear();
    120     }
    121     return 0;
    122 }
    View Code

      
  • 相关阅读:
    VBS与JS变量共享与互操作
    VBA之MSForms.DataObject对象
    VBA编程的工程性规划
    WSF脚本详解:JS和VBS互调用
    HTA程序:VBS/JS脚本GUI
    Python字符串格式化
    Python __builtins__模块拾穗
    Java高级特性 第6节 注解初识
    Java高级特性 第5节 序列化和、反射机制
    Java高级特性 第4节 输入输出流
  • 原文地址:https://www.cnblogs.com/ubuntu-kevin/p/3856340.html
Copyright © 2011-2022 走看看