zoukankan      html  css  js  c++  java
  • 计算几何模板

    计算几何基础模板

    基础类型

    const double eps = 1e-8;
    const double PI=acos(-1.0);
    int sgn(double x) {
        if(fabs(x) < eps) return 0;
        if(x < 0) return -1;
        return 1;
    }
    struct Point {
        double x,y;
        Point() {}
        Point(double _x,double _y) {
            x = _x;y = _y;
        }
        Point operator -(const Point &b)const {
            return Point(x - b.x,y - b.y);
        }
        Point operator +(const Point &b)const {
            return Point(x + b.x,y +b.y);
        }
        double operator ^(const Point &b)const {
            return x*b.y - y*b.x;
        }
        double operator *(const Point &b)const {
            return x*b.x + y*b.y;
        }
        Point operator *(double b)const {
            return Point(x*b,y*b);
        }
        Point Rotate(double rad){ //逆时针旋转
            return Point(x*cos(rad)-y*sin(rad),x*sin(rad)+y*cos(rad));
        }
        double angle(){
            return atan2(y,x);
        }
        double len(){//Vector
            return sqrt(x*x+y*y);
        }
        void stdd(){//Vector
            double le=len();
            x/=le;y/=le;
        }
        void input(){
            scanf("%lf%lf",&x,&y);
        }
        void output(){
            printf("(%.8f,%.8f) ",x,y);
        }
    };
    double xmult(Point p0,Point p1,Point p2) { //p0p1 X p0p2
        return (p1-p0)^(p2-p0);
    }
    double dist(Point a,Point b) {//a到b距离
        return sqrt( (b - a)*(b - a) );
    }
    double getArea(Point a,Point b,Point c){//三角形面积S
        return fabs(xmult(a,b,c))/2.0;
    }
    double distLP(Point a,Point b,Point p){//p到ab的距离
        return getArea(a,b,p)*2/dist(a,b);
    }
    double calArea(vector<Point> &p){//按逆时针排列的多边形面积
        double ans=0;
        int m=p.size();
        for(int i=0;i<m;i++){
            ans+=p[i]^p[(i+1)%m];
        }
        return fabs(ans/2.0);
    }
    struct Line{
    	Point s,t;
    	double ang;
    	Line(Point X=Point(),Point Y=Point()){
    		s=X,t=Y,ang=(Y-X).angle();
    	}
    	double getangle(){
            return ang=(t-s).angle();
    	}
        double getDistance(Point A){ //点到直线的距离
            return fabs((A-s)^(A-t))/dist(s,t);
        }
    };
    Point getIntersectPoint(Line a, Line b) {//两直线交,注意如果两直线重合会出错,要先判断
        double a1 = a.s.y - a.t.y, b1 = a.t.x - a.s.x, c1 = a.s.x * a.t.y - a.t.x * a.s.y;
        double a2 = b.s.y - b.t.y, b2 = b.t.x - b.s.x, c2 = b.s.x * b.t.y - b.t.x * b.s.y;
        return Point((c1*b2-c2*b1)/(a2*b1-a1*b2), (a2*c1-a1*c2)/(a1*b2-a2*b1));
    }
    struct Circle {
        Point o;
        double r;
        Circle(){}
        void input(){
            o.input();
            scanf("%lf",&r);
        }
        void output(){
            printf("%.8f %.8f %.8f
    ",o.x,o.y,r);
        }
    };
    

    判断两个线段是否相交

    bool jiao(Point a,Point b,Point c,Point d){//判断线段ab和cd是否相交
        if( max(a.x,b.x)<min(c.x,d.x)||
            max(a.y,b.y)<min(c.y,d.y)||
            max(c.x,d.x)<min(a.x,b.x)||
            max(c.y,d.y)<min(a.y,b.y)||
            xmult(a,c,b)*xmult(a,b,d)<0||
            xmult(c,a,d)*xmult(c,d,b)<0 )
        return 0;
        else return 1;
    }
    

    atan2

    atan2(double y,double x);

    返回坐标(x,y)的极角(-pi~pi)

    第一象限为((0,pi/2))

    第二象限为((pi/2,pi))

    第三象限为 ((-pi,-pi/2))

    第四象限为((-pi/2,0))

    极角排序

    选用一个点o为中心进行极角排序时,需要先将其他点坐标转化为相对o的坐标,即原坐标-o的坐标。

    用atan2直接排序,存在精度问题

    bool cmp1(Point a,Point b){
        if(atan2(a.y,a.x)!=atan2(b.y,b.x))
            return atan2(a.y,a.x)<atan2(b.y,b.x);
        else return a.x<b.x;
    }
    

    利用叉积排序,要求点分布在180°圆心角内

    bool cmp2(Point a,Point b){
        return sgn(a^b)>0;
    }
    

    先按照象限排序,再按照叉积排序:

    int getq(Point a) {
        if(a.x>0 && a.y>=0) return 1;
        if(a.x<=0 && a.y>0) return 2;
        if(a.x<0 && a.y<=0) return 3;
        if(a.x>=0 && a.y<0) return 4;
    }
    bool cmp(Point a,Point b){
        if(getq(a)==getq(b))
            return cmp2(a,b);
        else return getq(a)<getq(b);
    }
    

    凸包

    bool cmpA(Point a,Point b){
        return a.x<b.x||(a.x==b.x && a.y<b.y);
    }
    vector<Point> Andrew(vector<Point> p) {//输入不能有重复点,若要凸包边上没有输入点,将两个<=改为<
        sort(p.begin(),p.end(),cmpA);
        vector<Point>tb;
        for(int i=0; i<p.size(); i++) {
            while(tb.size()>=2&&sgn(xmult(tb[tb.size()-2],tb[tb.size()-1],p[i]))<=0)tb.pop_back();
            tb.push_back(p[i]);
        }
        int temp=tb.size();
        for(int i=p.size()-2; i>=0; i--) {
            while(tb.size()>temp&&sgn(xmult(tb[tb.size()-2],tb[tb.size()-1],p[i]))<=0)tb.pop_back();
            tb.push_back(p[i]);
        }
        if(p.size()>1)tb.pop_back();
        return tb;
    }
    

    半平面交

    bool onRight(Line a,Line b,Line c){
        Point jiao=getIntersectPoint(b,c);
        if(xmult(a.s,a.t,jiao)<0){
            return 1;
        }
        else{
            return 0;
        }
    }
    bool cmpHL(Line a,Line b){
        double A=a.getangle(),B=b.getangle();
        if(sgn(A-B)==0){//平行的直线将最左边的放后面,便于去重
            return xmult(a.s,a.t,b.t)>=0;
        }
        else{
            return A<B;
        }
    }
    vector<Line> getHL(vector<Line> l){
        //去除角度相同的,保留最最左的
        sort(l.begin(),l.end(),cmpHL);
        int n=l.size();
        int cnt=0;
        for(int i=0;i<=n-2;i++){
            if(sgn(l[i].getangle()-l[i+1].getangle())==0){
                continue;
            }
            l[cnt++]=l[i];
        }
        l[cnt++]=l[n-1];
    
        deque<Line> que;
        for(int i=0;i<cnt;i++){
            while(que.size()>=2&&onRight(l[i],que[que.size()-1],que[que.size()-2])) que.pop_back();
            while(que.size()>=2&&onRight(l[i],que[0],que[1])) que.pop_front();
            que.push_back(l[i]);
        }
        while(que.size()>=3&&onRight(que[0],que[que.size()-1],que[que.size()-2])) que.pop_back();
        while(que.size()>=3&&onRight(que[que.size()-1],que[0],que[1])) que.pop_front();
    
        vector<Line> hl;
        for(int i=0;i<que.size();i++){
            hl.push_back(que[i]);
        }
        return hl;
    }
    

    旋转卡壳

    //求凸包的直径
    int getMax(vector<Point> p){//要求凸包逆时针排列
        int n=p.size();
        int ans=0;
        if(n==2){
            return dist(p[1],p[0]);
        }
        int j=2;
        for(int i=0;i<n;i++){
            while(getArea(p[i],p[(i+1)%n],p[j])<getArea(p[i],p[(i+1)%n],p[(j+1)%n])){
                j=(j+1)%n;
            }
            ans=max(ans,max(dist(p[i],p[j]),dist(p[(i+1)%n],p[j])));
        }
        return ans;
    }
    

    反演变换

    Point PtP(Point a,Point p,double r){//点到点
        Point v1=a-p;
        v1.stdd();
        double len=r*r/dist(a,p);
        return p+v1*len;
    }
    Circle CtC(Circle C,Point p,double r){//圆到圆
        Circle res;
        double t = dist(C.o,p);
        double x = r*r / (t - C.r);
        double y = r*r / (t + C.r);
        res.r = (x - y) / 2.0;
        double s = (x + y) / 2.0;
        res.o = p + (C.o - p) * (s / t);
        return res;
    }
    Circle LtC(Point a,Point b,Point p,double r){//直线到过反演点的圆
        double d=distLP(a,b,p);
        d=r*r/d;
        Circle c;
        c.r=d/2;
        Point v1;
        if(xmult(a,b,p)>0)
            v1=(a-b).Rotate(PI/2);
        else
            v1=(b-a).Rotate(PI/2);
        v1.stdd();
        c.o=p+v1*c.r;
        return c;
    }
    
    

    最小圆覆盖

    Point circumcenter(Point a,Point b,Point c){
        double x1=a.x,y1=a.y,x2=b.x,y2=b.y,x3=c.x,y3=c.y;
        double a1=x2-x1,b1=y2-y1,c1=(x2*x2-x1*x1+y2*y2-y1*y1)/2;
        double a2=x3-x1,b2=y3-y1,c2=(x3*x3-x1*x1+y3*y3-y1*y1)/2;
        return {(b2*c1-b1*c2)/(a1*b2-a2*b1),(a1*c2-a2*c1)/(a1*b2-a2*b1)};
    }
    void min_cover_circle(vector<Point> p,Point &c,double &r)
    {
        random_shuffle(p.begin(),p.end());      //将n个点随机打乱
        int n=p.size();
        c=p[0]; r=0;
        for(int i=1;i<n;i++)
        {
            if(dist(p[i],c)>r+eps)   //第一个点
            {
                c=p[i]; r=0;
                for(int j=0;j<i;j++)
                    if(dist(p[j],c)>r+eps)  //第二个点
                    {
                        c.x=(p[i].x+p[j].x)/2;
                        c.y=(p[i].y+p[j].y)/2;
                        r=dist(p[j],c);
                        for(int k=0;k<j;k++)
                            if(dist(p[k],c)>r+eps)  //第三个点
                            {   //求外接圆圆心,三点必不共线
                                c=circumcenter(p[i],p[j],p[k]);
                                r=dist(p[i],c);
                            }
                    }
            }
        }
    }
    

    未整理

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    
    using namespace std;
    const double PI = acos(-1.0);
    const double eps = 1e-10;
    
    /****************常用函数***************/
    //判断ta与tb的大小关系
    int sgn( double ta, double tb)
    {
        if(fabs(ta-tb)<eps)return 0;
        if(ta<tb)   return -1;
        return 1;
    }
    
    //点
    class Point
    {
    public:
    
        double x, y;
    
        Point(){}
        Point( double tx, double ty){ x = tx, y = ty;}
    
        bool operator < (const Point &_se) const
        {
            return x<_se.x || (x==_se.x && y<_se.y);
        }
        friend Point operator + (const Point &_st,const Point &_se)
        {
            return Point(_st.x + _se.x, _st.y + _se.y);
        }
        friend Point operator - (const Point &_st,const Point &_se)
        {
            return Point(_st.x - _se.x, _st.y - _se.y);
        }
        //点位置相同(double类型)
        bool operator == (const Point &_off)const
        {
            return  sgn(x, _off.x) == 0 && sgn(y, _off.y) == 0;
        }
    
    };
    
    /****************常用函数***************/
    //点乘
    double dot(const Point &po,const Point &ps,const Point &pe)
    {
        return (ps.x - po.x) * (pe.x - po.x) + (ps.y - po.y) * (pe.y - po.y);
    }
    //叉乘
    double xmult(const Point &po,const Point &ps,const Point &pe)
    {
        return (ps.x - po.x) * (pe.y - po.y) - (pe.x - po.x) * (ps.y - po.y);
    }
    //两点间距离的平方
    double getdis2(const Point &st,const Point &se)
    {
        return (st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y);
    }
    //两点间距离
    double getdis(const Point &st,const Point &se)
    {
        return sqrt((st.x - se.x) * (st.x - se.x) + (st.y - se.y) * (st.y - se.y));
    }
    
    //两点表示的向量
    class Line
    {
    public:
    
        Point s, e;//两点表示,起点[s],终点[e]
        double a, b, c;//一般式,ax+by+c=0
        double angle;//向量的角度,[-pi,pi]
    
        Line(){}
        Line( Point ts, Point te):s(ts),e(te){}//get_angle();}
        Line(double _a,double _b,double _c):a(_a),b(_b),c(_c){}
    
        //排序用
        bool operator < (const Line &ta)const
        {
            return angle<ta.angle;
        }
        //向量与向量的叉乘
        friend double operator / ( const Line &_st, const  Line &_se)
        {
            return (_st.e.x - _st.s.x) * (_se.e.y - _se.s.y) - (_st.e.y - _st.s.y) * (_se.e.x - _se.s.x);
        }
        //向量间的点乘
        friend double operator *( const Line &_st, const  Line &_se)
        {
            return (_st.e.x - _st.s.x) * (_se.e.x - _se.s.x) - (_st.e.y - _st.s.y) * (_se.e.y - _se.s.y);
        }
        //从两点表示转换为一般表示
        //a=y2-y1,b=x1-x2,c=x2*y1-x1*y2
        bool pton()
        {
            a = e.y - s.y;
            b = s.x - e.x;
            c = e.x * s.y - e.y * s.x;
            return true;
        }
        //半平面交用
        //点在向量左边(右边的小于号改成大于号即可,在对应直线上则加上=号)
        friend bool operator < (const Point &_Off, const Line &_Ori)
        {
            return (_Ori.e.y - _Ori.s.y) * (_Off.x - _Ori.s.x)
                < (_Off.y - _Ori.s.y) * (_Ori.e.x - _Ori.s.x);
        }
        //求直线或向量的角度
        double get_angle( bool isVector = true)
        {
            angle = atan2( e.y - s.y, e.x - s.x);
            if(!isVector && angle < 0)
                angle += PI;
            return angle;
        }
    
        //点在线段或直线上 1:点在直线上 2点在s,e所在矩形内
        bool has(const Point &_Off, bool isSegment = false) const
        {
            bool ff = sgn( xmult( s, e, _Off), 0) == 0;
            if( !isSegment) return ff;
            return ff
                && sgn(_Off.x - min(s.x, e.x), 0) >= 0 && sgn(_Off.x - max(s.x, e.x), 0) <= 0
                && sgn(_Off.y - min(s.y, e.y), 0) >= 0 && sgn(_Off.y - max(s.y, e.y), 0) <= 0;
        }
    
        //点到直线/线段的距离
        double dis(const Point &_Off, bool isSegment = false)
        {
            ///化为一般式
            pton();
            //到直线垂足的距离
            double td = (a * _Off.x + b * _Off.y + c) / sqrt(a * a + b * b);
            //如果是线段判断垂足
            if(isSegment)
            {
                double xp = (b * b * _Off.x - a * b * _Off.y - a * c) / ( a * a + b * b);
                double yp = (-a * b * _Off.x + a * a * _Off.y - b * c) / (a * a + b * b);
                double xb = max(s.x, e.x);
                double yb = max(s.y, e.y);
                double xs = s.x + e.x - xb;
                double ys = s.y + e.y - yb;
               if(xp > xb + eps || xp < xs - eps || yp > yb + eps || yp < ys - eps)
                    td = min( getdis(_Off,s), getdis(_Off,e));
            }
            return fabs(td);
        }
    
        //关于直线对称的点
        Point mirror(const Point &_Off)
        {
            ///注意先转为一般式
            Point ret;
            double d = a * a + b * b;
            ret.x = (b * b * _Off.x - a * a * _Off.x - 2 * a * b * _Off.y - 2 * a * c) / d;
            ret.y = (a * a * _Off.y - b * b * _Off.y - 2 * a * b * _Off.x - 2 * b * c) / d;
            return ret;
        }
        //计算两点的中垂线
        static Line ppline(const Point &_a,const Point &_b)
        {
            Line ret;
            ret.s.x = (_a.x + _b.x) / 2;
            ret.s.y = (_a.y + _b.y) / 2;
            //一般式
            ret.a = _b.x - _a.x;
            ret.b = _b.y - _a.y;
            ret.c = (_a.y - _b.y) * ret.s.y + (_a.x - _b.x) * ret.s.x;
            //两点式
            if(fabs(ret.a) > eps)
            {
                ret.e.y = 0.0;
                ret.e.x = - ret.c / ret.a;
                if(ret.e == ret. s)
                {
                    ret.e.y = 1e10;
                    ret.e.x = - (ret.c - ret.b * ret.e.y) / ret.a;
                }
            }
            else
            {
                ret.e.x = 0.0;
                ret.e.y = - ret.c / ret.b;
                if(ret.e == ret. s)
                {
                    ret.e.x = 1e10;
                    ret.e.y = - (ret.c - ret.a * ret.e.x) / ret.b;
                }
            }
            return ret;
        }
    
        //------------直线和直线(向量)-------------
        //向量向左边平移t的距离
        Line& moveLine( double t)
        {
            Point of;
            of = Point( -( e.y - s.y), e.x - s.x);
            double dis = sqrt( of.x * of.x + of.y * of.y);
            of.x= of.x * t / dis, of.y = of.y * t / dis;
            s = s + of, e = e + of;
            return *this;
        }
        //直线重合
        static bool equal(const Line &_st,const Line &_se)
        {
            return _st.has( _se.e) && _se.has( _st.s);
        }
        //直线平行
        static bool parallel(const Line &_st,const Line &_se)
        {
            return sgn( _st / _se, 0) == 0;
        }
        //两直线(线段)交点
        //返回-1代表平行,0代表重合,1代表相交
        static bool crossLPt(const Line &_st,const Line &_se, Point &ret)
        {
            if(parallel(_st,_se))
            {
                if(Line::equal(_st,_se)) return 0;
                return -1;
            }
            ret = _st.s;
            double t = ( Line(_st.s,_se.s) / _se) / ( _st / _se);
            ret.x += (_st.e.x - _st.s.x) * t;
            ret.y += (_st.e.y - _st.s.y) * t;
            return 1;
        }
        //------------线段和直线(向量)----------
        //直线和线段相交
        //参数:直线[_st],线段[_se]
        friend bool crossSL( Line &_st, Line &_se)
        {
            return sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.e), 0) >= 0;
        }
    
        //判断线段是否相交(注意添加eps)
        static bool isCrossSS( const Line &_st, const  Line &_se)
        {
            //1.快速排斥试验判断以两条线段为对角线的两个矩形是否相交
            //2.跨立试验(等于0时端点重合)
            return
                max(_st.s.x, _st.e.x) >= min(_se.s.x, _se.e.x) &&
                max(_se.s.x, _se.e.x) >= min(_st.s.x, _st.e.x) &&
                max(_st.s.y, _st.e.y) >= min(_se.s.y, _se.e.y) &&
                max(_se.s.y, _se.e.y) >= min(_st.s.y, _st.e.y) &&
                sgn( xmult( _se.s, _st.s, _se.e) * xmult( _se.s, _se.e, _st.s), 0) >= 0 &&
                sgn( xmult( _st.s, _se.s, _st.e) * xmult( _st.s, _st.e, _se.s), 0) >= 0;
        }
    };
    
    //寻找凸包的graham 扫描法所需的排序函数
    Point gsort;
    bool gcmp( const Point &ta, const Point &tb)/// 选取与最后一条确定边夹角最小的点,即余弦值最大者
    {
        double tmp = xmult( gsort, ta, tb);
        if( fabs( tmp) < eps)
            return getdis( gsort, ta) < getdis( gsort, tb);
        else if( tmp > 0)
            return 1;
        return 0;
    }
    
    class Polygon
    {
    public:
        const static int maxpn = 5e4+7;
        Point pt[maxpn];//点(顺时针或逆时针)
        Line dq[maxpn]; //求半平面交打开注释
        int n;//点的个数
    
    
        //求多边形面积,多边形内点必须顺时针或逆时针
        double area()
        {
            double ans = 0.0;
            for(int i = 0; i < n; i ++)
            {
                int nt = (i + 1) % n;
                ans += pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
            }
            return fabs( ans / 2.0);
        }
        //求多边形重心,多边形内点必须顺时针或逆时针
        Point gravity()
        {
            Point ans;
            ans.x = ans.y = 0.0;
            double area = 0.0;
            for(int i = 0; i < n; i ++)
            {
                int nt = (i + 1) % n;
                double tp = pt[i].x * pt[nt].y - pt[nt].x * pt[i].y;
                area += tp;
                ans.x += tp * (pt[i].x + pt[nt].x);
                ans.y += tp * (pt[i].y + pt[nt].y);
            }
            ans.x /= 3 * area;
            ans.y /= 3 * area;
            return ans;
        }
        //判断点是否在任意多边形内[射线法],O(n)
        bool ahas( Point &_Off)
        {
            int ret = 0;
            double infv = 1e20;//坐标系最大范围
            Line l = Line( _Off, Point( -infv ,_Off.y));
            for(int i = 0; i < n; i ++)
            {
                Line ln = Line( pt[i], pt[(i + 1) % n]);
                if(fabs(ln.s.y - ln.e.y) > eps)
                {
                    Point tp = (ln.s.y > ln.e.y)? ln.s: ln.e;
                    if( ( fabs( tp.y - _Off.y) < eps && tp.x < _Off.x + eps) || Line::isCrossSS( ln, l))
                        ret++;
                }
                else if( Line::isCrossSS( ln, l))
                    ret++;
            }
            return ret&1;
        }
    
        //判断任意点是否在凸包内,O(logn)
        bool bhas( Point & p)
        {
            if( n < 3)
                return false;
            if( xmult( pt[0], p, pt[1]) > eps)
                return false;
            if( xmult( pt[0], p, pt[n-1]) < -eps)
                return false;
            int l = 2,r = n-1;
            int line = -1;
            while( l <= r)
            {
                int mid = ( l + r) >> 1;
                if( xmult( pt[0], p, pt[mid]) >= 0)
                    line = mid,r = mid - 1;
                else l = mid + 1;
            }
            return xmult( pt[line-1], p, pt[line]) <= eps;
        }
    
    
    
        //凸多边形被直线分割
        Polygon split( Line &_Off)
        {
            //注意确保多边形能被分割
            Polygon ret;
            Point spt[2];
            double tp = 0.0, np;
            bool flag = true;
            int i, pn = 0, spn = 0;
            for(i = 0; i < n; i ++)
            {
                if(flag)
                    pt[pn ++] = pt[i];
                else
                    ret.pt[ret.n ++] = pt[i];
                np = xmult( _Off.s, _Off.e, pt[(i + 1) % n]);
                if(tp * np < -eps)
                {
                    flag = !flag;
                    Line::crossLPt( _Off, Line(pt[i], pt[(i + 1) % n]), spt[spn++]);
                }
                tp = (fabs(np) > eps)?np: tp;
            }
            ret.pt[ret.n ++] = spt[0];
            ret.pt[ret.n ++] = spt[1];
            n = pn;
            return ret;
        }
    
    
        /** 卷包裹法求点集凸包,_p为输入点集,_n为点的数量 **/
        void ConvexClosure( Point _p[], int _n)
        {
            sort( _p, _p + _n);
            n = 0;
            for(int i = 0; i < _n; i++)
            {
                while( n > 1 && sgn( xmult( pt[n-2], pt[n-1], _p[i]), 0) <= 0)
                    n--;
                pt[n++] = _p[i];
            }
            int _key = n;
            for(int i = _n - 2; i >= 0; i--)
            {
                while( n > _key && sgn( xmult( pt[n-2], pt[n-1], _p[i]), 0) <= 0)
                    n--;
                pt[n++] = _p[i];
            }
            if(n>1)   n--;//除去重复的点,该点已是凸包凸包起点
        }
        /****** 寻找凸包的graham 扫描法********************/
        /****** _p为输入的点集,_n为点的数量****************/
    
        void graham( Point _p[], int _n)
        {
            int cur=0;
            for(int i = 1; i < _n; i++)
                if( sgn( _p[cur].y, _p[i].y) > 0 || ( sgn( _p[cur].y, _p[i].y) == 0 && sgn( _p[cur].x, _p[i].x) > 0) )
                    cur = i;
            swap( _p[cur], _p[0]);
            n = 0, gsort = pt[n++] = _p[0];
            if( _n <= 1)   return;
            sort( _p + 1, _p+_n ,gcmp);
            pt[n++] = _p[1];
            for(int i = 2; i < _n; i++)
            {
                while(n>1 && sgn( xmult( pt[n-2], pt[n-1], _p[i]), 0) <= 0)// 当凸包退化成直线时需特别注意n
                    n--;
                pt[n++] = _p[i];
            }
        }
        //凸包旋转卡壳(注意点必须顺时针或逆时针排列)
        //返回值凸包直径的平方(最远两点距离的平方)
        pair<Point,Point> rotating_calipers()
        {
            int i = 1 % n;
            double ret = 0.0;
            pt[n] = pt[0];
            pair<Point,Point>ans=make_pair(pt[0],pt[0]);
            for(int j = 0; j < n; j ++)
            {
                while( fabs( xmult( pt[i+1], pt[j], pt[j + 1])) > fabs( xmult( pt[i], pt[j], pt[j + 1])) + eps)
                    i = (i + 1) % n;
                //pt[i]和pt[j],pt[i + 1]和pt[j + 1]可能是对踵点
                if(ret < getdis2(pt[i],pt[j]))  ret = getdis2(pt[i],pt[j]), ans = make_pair(pt[i],pt[j]);
                if(ret < getdis2(pt[i+1],pt[j+1]))  ret = getdis(pt[i+1],pt[j+1]), ans = make_pair(pt[i+1],pt[j+1]);
            }
            return ans;
        }
    
        //凸包旋转卡壳(注意点必须逆时针排列)
        //返回值两凸包的最短距离
        double rotating_calipers( Polygon &_Off)
        {
            int i = 0;
            double ret = 1e10;//inf
            pt[n] = pt[0];
            _Off.pt[_Off.n] = _Off.pt[0];
            //注意凸包必须逆时针排列且pt[0]是左下角点的位置
            while( _Off.pt[i + 1].y > _Off.pt[i].y)
                i = (i + 1) % _Off.n;
            for(int j = 0; j < n; j ++)
            {
                double tp;
                //逆时针时为 >,顺时针则相反
                while((tp = xmult(_Off.pt[i + 1],pt[j], pt[j + 1]) - xmult(_Off.pt[i], pt[j], pt[j + 1])) > eps)
                    i = (i + 1) % _Off.n;
                //(pt[i],pt[i+1])和(_Off.pt[j],_Off.pt[j + 1])可能是最近线段
                ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i], true));
                ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j + 1], true));
                if(tp > -eps)//如果不考虑TLE问题最好不要加这个判断
                {
                    ret = min(ret, Line(pt[j], pt[j + 1]).dis(_Off.pt[i + 1], true));
                    ret = min(ret, Line(_Off.pt[i], _Off.pt[i + 1]).dis(pt[j], true));
                }
            }
            return ret;
        }
    
        //-----------半平面交-------------
        //复杂度:O(nlog2(n))
        //获取半平面交的多边形(多边形的核)
        //参数:向量集合[l],向量数量[ln];(半平面方向在向量左边)
        //函数运行后如果n[即返回多边形的点数量]为0则不存在半平面交的多边形(不存在区域或区域面积无穷大)
        int judege( Line &_lx, Line &_ly, Line &_lz)
        {
            Point tmp;
            Line::crossLPt(_lx,_ly,tmp);
            return sgn(xmult(_lz.s,tmp,_lz.e),0);
        }
        int halfPanelCross(Line L[], int ln)
        {
            int i, tn, bot, top;
            for(int i = 0; i < ln; i++)
                L[i].get_angle();
            sort(L, L + ln);
            //平面在向量左边的筛选
            for(i = tn = 1; i < ln; i ++)
                if(fabs(L[i].angle - L[i - 1].angle) > eps)
                    L[tn ++] = L[i];
            ln = tn, n = 0, bot = 0, top = 1;
            dq[0] = L[0], dq[1] = L[1];
            for(i = 2; i < ln; i ++)
            {
                while(bot < top &&  judege(dq[top],dq[top-1],L[i]) > 0)
                    top --;
                while(bot < top &&  judege(dq[bot],dq[bot+1],L[i]) > 0)
                    bot ++;
                dq[++ top] = L[i];
            }
            while(bot < top && judege(dq[top],dq[top-1],dq[bot]) > 0)
                top --;
            while(bot < top && judege(dq[bot],dq[bot+1],dq[top]) > 0)
                bot ++;
            //若半平面交退化为点或线
            //        if(top <= bot + 1)
            //            return 0;
            dq[++top] = dq[bot];
            for(i = bot; i < top; i ++)
                Line::crossLPt(dq[i],dq[i + 1],pt[n++]);
            return n;
        }
    };
    
    
    class Circle
    {
    public:
        Point c;//圆心
        double r;//半径
        double db, de;//圆弧度数起点, 圆弧度数终点(逆时针0-360)
    
        //-------圆---------
    
        //判断圆在多边形内
        bool inside( Polygon &_Off)
        {
            if(_Off.ahas(c) == false)
                return false;
            for(int i = 0; i < _Off.n; i ++)
            {
                Line l = Line(_Off.pt[i], _Off.pt[(i + 1) % _Off.n]);
                if(l.dis(c, true) < r - eps)
                    return false;
            }
            return true;
        }
    
        //判断多边形在圆内(线段和折线类似)
        bool has( Polygon &_Off)
        {
            for(int i = 0; i < _Off.n; i ++)
                if( getdis2(_Off.pt[i],c) > r * r - eps)
                    return false;
            return true;
        }
    
        //-------圆弧-------
        //圆被其他圆截得的圆弧,参数:圆[_Off]
        Circle operator-(Circle &_Off) const
        {
            //注意圆必须相交,圆心不能重合
            double d2 = getdis2(c,_Off.c);
            double d = getdis(c,_Off.c);
            double ans = acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));
            Point py = _Off.c - c;
            double oans = atan2(py.y, py.x);
            Circle res;
            res.c = c;
            res.r = r;
            res.db = oans + ans;
            res.de = oans - ans + 2 * PI;
            return res;
        }
        //圆被其他圆截得的圆弧,参数:圆[_Off]
        Circle operator+(Circle &_Off) const
        {
            //注意圆必须相交,圆心不能重合
            double d2 = getdis2(c,_Off.c);
            double d = getdis(c,_Off.c);
            double ans = acos((d2 + r * r - _Off.r * _Off.r) / (2 * d * r));
            Point py = _Off.c - c;
            double oans = atan2(py.y, py.x);
            Circle res;
            res.c = c;
            res.r = r;
            res.db = oans - ans;
            res.de = oans + ans;
            return res;
        }
    
        //过圆外一点的两条切线
        //参数:点[_Off](必须在圆外),返回:两条切线(切线的s点为_Off,e点为切点)
        pair<Line, Line>  tangent( Point &_Off)
        {
            double d = getdis(c,_Off);
            //计算角度偏移的方式
            double angp = acos(r / d), ango = atan2(_Off.y - c.y, _Off.x - c.x);
            Point pl = Point(c.x + r * cos(ango + angp), c.y + r * sin(ango + angp)),
                pr = Point(c.x + r * cos(ango - angp), c.y + r * sin(ango - angp));
            return make_pair(Line(_Off, pl), Line(_Off, pr));
        }
    
        //计算直线和圆的两个交点
        //参数:直线[_Off](两点式),返回两个交点,注意直线必须和圆有两个交点
        pair<Point, Point> cross(Line _Off)
        {
            _Off.pton();
            //到直线垂足的距离
            double td = fabs(_Off.a * c.x + _Off.b * c.y + _Off.c) / sqrt(_Off.a * _Off.a + _Off.b * _Off.b);
    
            //计算垂足坐标
            double xp = (_Off.b * _Off.b * c.x - _Off.a * _Off.b * c.y - _Off.a * _Off.c) / ( _Off.a * _Off.a + _Off.b * _Off.b);
            double yp = (- _Off.a * _Off.b * c.x + _Off.a * _Off.a * c.y - _Off.b * _Off.c) / (_Off.a * _Off.a + _Off.b * _Off.b);
    
            double ango = atan2(yp - c.y, xp - c.x);
            double angp = acos(td / r);
    
            return make_pair(Point(c.x + r * cos(ango + angp), c.y + r * sin(ango + angp)),
                Point(c.x + r * cos(ango - angp), c.y + r * sin(ango - angp)));
        }
    };
    
    class triangle
    {
    public:
        Point a, b, c;//顶点
        triangle(){}
        triangle(Point a, Point b, Point c): a(a), b(b), c(c){}
    
        //计算三角形面积
        double area()
        {
            return fabs( xmult(a, b, c)) / 2.0;
        }
    
        //计算三角形外心
        //返回:外接圆圆心
        Point circumcenter()
        {
            double pa = a.x * a.x + a.y * a.y;
            double pb = b.x * b.x + b.y * b.y;
            double pc = c.x * c.x + c.y * c.y;
            double ta = pa * ( b.y - c.y) - pb * ( a.y - c.y) + pc * ( a.y - b.y);
            double tb = -pa * ( b.x - c.x) + pb * ( a.x - c.x) - pc * ( a.x - b.x);
            double tc = a.x * ( b.y - c.y) - b.x * ( a.y - c.y) + c.x * ( a.y - b.y);
            return Point( ta / 2.0 / tc, tb / 2.0 / tc);
        }
    
        //计算三角形内心
        //返回:内接圆圆心
        Point incenter()
        {
            Line u, v;
            double m, n;
            u.s = a;
            m = atan2(b.y - a.y, b.x - a.x);
            n = atan2(c.y - a.y, c.x - a.x);
            u.e.x = u.s.x + cos((m + n) / 2);
            u.e.y = u.s.y + sin((m + n) / 2);
            v.s = b;
            m = atan2(a.y - b.y, a.x - b.x);
            n = atan2(c.y - b.y, c.x - b.x);
            v.e.x = v.s.x + cos((m + n) / 2);
            v.e.y = v.s.y + sin((m + n) / 2);
            Point ret;
            Line::crossLPt(u,v,ret);
            return ret;
        }
    
        //计算三角形垂心
        //返回:高的交点
        Point perpencenter()
        {
            Line u,v;
            u.s = c;
            u.e.x = u.s.x - a.y + b.y;
            u.e.y = u.s.y + a.x - b.x;
            v.s = b;
            v.e.x = v.s.x - a.y + c.y;
            v.e.y = v.s.y + a.x - c.x;
            Point ret;
            Line::crossLPt(u,v,ret);
            return ret;
        }
    
        //计算三角形重心
        //返回:重心
        //到三角形三顶点距离的平方和最小的点
        //三角形内到三边距离之积最大的点
        Point barycenter()
        {
            Line u,v;
            u.s.x = (a.x + b.x) / 2;
            u.s.y = (a.y + b.y) / 2;
            u.e = c;
            v.s.x = (a.x + c.x) / 2;
            v.s.y = (a.y + c.y) / 2;
            v.e = b;
            Point ret;
            Line::crossLPt(u,v,ret);
            return ret;
        }
    
        //计算三角形费马点
        //返回:到三角形三顶点距离之和最小的点
        Point fermentPoint()
        {
            Point u, v;
            double step = fabs(a.x) + fabs(a.y) + fabs(b.x) + fabs(b.y) + fabs(c.x) + fabs(c.y);
            int i, j, k;
            u.x = (a.x + b.x + c.x) / 3;
            u.y = (a.y + b.y + c.y) / 3;
            while (step > eps)
            {
                for (k = 0; k < 10; step /= 2, k ++)
                {
                    for (i = -1; i <= 1; i ++)
                    {
                        for (j =- 1; j <= 1; j ++)
                        {
                            v.x = u.x + step * i;
                            v.y = u.y + step * j;
                            if (getdis(u,a) + getdis(u,b) + getdis(u,c) > getdis(v,a) + getdis(v,b) + getdis(v,c))
                                u = v;
                        }
                    }
                }
            }
            return u;
        }
    };
    
    int main(){
        return 0;
    }
    
  • 相关阅读:
    转:Mac下搭建svn服务器和XCode配置svn
    坑爹的高德地图API
    Mac下搭建svn服务器和XCode配置svn
    手风琴效果
    模仿淘宝吸顶条(定时器)
    模仿手机发送短信
    上下移动-欢迎拍砖
    中国的数字图书馆
    响应式布局这件小事
    JS学习笔记
  • 原文地址:https://www.cnblogs.com/ucprer/p/12867541.html
Copyright © 2011-2022 走看看