大意: 给定$n$个数, 求选择最少的数满足积为$k$的倍数, 并且和最小
刚开始想着暴力维护$k$的素因子向量, 用map转移, 结果T了. 看了下别的dala0题解, 不需要考虑素因子, 我们考虑k的所有因子, 用map预处理一下每个因子再转移就好了.
总的复杂度是$O(nsigma_0(k)logk)$, 1e12以内除数函数最大值是6720, 应该是可以过的, 但这题太卡时限了, long long 的gcd跑太慢. 但是可以发现每次只对k求gcd, 可以优化到$O(nsigma_0(k)primes(k))$, 或者提前对a数组取一下gcd, 可以优化一下....
#include <iostream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr putchar(10) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' using namespace std; typedef long long ll; typedef pair<int,ll> pii; const int P = 1e9+7, INF = 0x3f3f3f3f; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} //head const int N = 1e3+10, M = 7e3+10; int n, sz; ll k, a[N], b[N]; vector<ll> A; map<ll,int> S; pii dp[N][M]; int main() { scanf("%d%lld", &n, &k); REP(i,1,n) scanf("%lld", a+i),b[i]=gcd(a[i],k); if (k==1) return printf("1 %d ",int(min_element(a+1,a+1+n)-a)),0; int mx = sqrt(k+0.5); REP(i,1,mx) if (k%i==0) { A.pb(i); if (k/i!=i) A.pb(k/i); } sort(A.begin(),A.end()); sz = A.size(); REP(i,0,sz-1) S[A[i]]=i; REP(i,1,sz-1) dp[0][i]=pii(n+1,0); REP(i,1,n) REP(j,0,sz-1) { ll pre = S[A[j]/gcd(A[j],b[i])]; dp[i][j] = pii(dp[i-1][pre].x+1,dp[i-1][pre].y+a[i]); dp[i][j] = min(dp[i][j], dp[i-1][j]); } if (dp[n][sz-1].x==n+1) return puts("-1"),0; printf("%d ", dp[n][sz-1].x); PER(i,1,n) if (dp[i][S[k]]!=dp[i-1][S[k]]) { printf("%d ", i); k /= gcd(k,b[i]); } hr; }