J. Pangu and Stones
大意: 给定$n$堆石子, $(nle 100)$, 每次操作任选连续的至少$L$堆至多$R$堆合并, 代价为合并石子的总数, 求合并为$1$堆的最少花费.
#include <iostream> #include <sstream> #include <algorithm> #include <cstdio> #include <math.h> #include <set> #include <map> #include <queue> #include <string> #include <string.h> #include <bitset> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) #define hr ({printf("dp[%d][%d][%d]=%d ",l,r,k,dp[l][r][k]),puts("");}) #define pb push_back #define lc (o<<1) #define rc (lc|1) #define mid ((l+r)>>1) #define ls lc,l,mid #define rs rc,mid+1,r #define x first #define y second #define io std::ios::sync_with_stdio(false) #define endl ' ' #define DB(a) ({REP(__i,1,n) cout<<a[__i]<<' ';hr;}) using namespace std; typedef long long ll; typedef pair<int,int> pii; const int P = 1e9+7, P2 = 998244353, INF = 5e8; ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} ll qpow(ll a,ll n) {ll r=1%P;for (a%=P;n;a=a*a%P,n>>=1)if(n&1)r=r*a%P;return r;} ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} inline int rd() {int x=0;char p=getchar();while(p<'0'||p>'9')p=getchar();while(p>='0'&&p<='9')x=x*10+p-'0',p=getchar();return x;} //head const int N = 110; int n,L,R,a[N]; int dp[N][N][N]; int main() { while (~scanf("%d%d%d", &n, &L, &R)) { REP(i,1,n) scanf("%d",a+i),a[i]+=a[i-1]; REP(d,1,n) REP(k,1,n) { for(int l=1,r=l+d-1;r<=n;++l,++r) { int &ans = dp[l][r][k]=INF; if (k==1) { if (l==r) ans=0; else if (r-l+1<L) ; else if (r-l+1<=R) ans=a[r]-a[l-1]; else { REP(i,L,R) REP(j,l,r-1) { ans = min(ans,dp[l][j][1]+dp[j+1][r][i-1]); } ans += a[r]-a[l-1]; } } else { REP(i,l,r-1) ans = min(ans, dp[l][i][1]+dp[i+1][r][k-1]); } } } printf("%d ",dp[1][n][1]>=INF?0:dp[1][n][1]); } }