zoukankan      html  css  js  c++  java
  • jQuery火箭图标返回顶部代码

    scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包。它通过NumPy, SciPy和
    Matplotlib等python数值计算的库实现高效的算法应用,并且涵盖了几乎所有主流机器学习算法。
    http://scikit-learn.org/stable/index.html

    https://sklearn.apachecn.org/

    安装必要的包:

    pip install numpy pandas matplotlib scikit-learn  graphviz  scipy jupyter

    本例在jupyter里运行,直接复制到jupyter里运行即可。

    # -*- coding:utf-8 -*-
    from sklearn import tree
    from sklearn.datasets import load_wine
    from sklearn.model_selection import train_test_split
    
    wine = load_wine()
    print(wine.data.shape)
    print(wine.target)
    #如果wine是一张表,应该长这样:
    import pandas as pd
    pd.concat([pd.DataFrame(wine.data),pd.DataFrame(wine.target)],axis=1)
    print(wine.feature_names)
    print(wine.target_names)
    Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3)
    print(Xtrain.shape)
    print(Xtest.shape)
    
    clf = tree.DecisionTreeClassifier(criterion="entropy")
    clf = clf.fit(Xtrain, Ytrain)
    score = clf.score(Xtest, Ytest) #返回预测的准确度
    print(score)
    
    feature_name = ['酒精','苹果酸','','灰的碱性','','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸']
    
    import graphviz
    dot_data = tree.export_graphviz(clf
                                   ,feature_names= feature_name
                                   ,class_names=["琴酒","雪莉","贝尔摩德"]
                                   ,filled=True
                                   ,rounded=True
                                   )
    graph = graphviz.Source(dot_data)
    graph #直接在jupyter里显示为图片
    graph.render("tree") #同级目录下生成tree.pdf文件

    运行结果:

    (178, 13)
    [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
     0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
     1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
     2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
    ['alcohol', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols', 'flavanoids', 'nonflavanoid_phenols', 'proanthocyanins', 'color_intensity', 'hue', 'od280/od315_of_diluted_wines', 'proline']
    ['class_0' 'class_1' 'class_2']
    (124, 13)
    (54, 13)
    0.9629629629629629

    没有jupyter的同学看这里:https://www.cnblogs.com/v5captain/p/6688494.html

    机器学习不能没有它,嘿嘿!

  • 相关阅读:
    Appium学习笔记||十一、Appium按键操作
    Appium学习笔记||九、操作不可见元素
    Appium学习笔记||八、滑动页面
    Appium学习笔记||七、用UIAutomator API定位
    Appium学习笔记||六、根据Xpath寻找元素
    Appium学习笔记||五、Tap方法
    enumerate 函数
    python 复制 浅copy 深copy 的区别
    听歌都能听出来代码...
    for 循环时候 pop现象
  • 原文地址:https://www.cnblogs.com/v5captain/p/12520557.html
Copyright © 2011-2022 走看看