|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
|
import numpy as npimport matplotlib.pyplot as plt# 生成数据def gen_data(x1, x2): y = np.sin(x1) * 1/2 + np.cos(x2) * 1/2 + 0.1 * x1 return ydef load_data(): x1_train = np.linspace(0, 50, 500) x2_train = np.linspace(-10, 10, 500) data_train = np.array([[x1, x2, gen_data(x1, x2) + np.random.random(1) - 0.5] for x1, x2 in zip(x1_train, x2_train)]) x1_test = np.linspace(0, 50, 100) + np.random.random(100) * 0.5 x2_test = np.linspace(-10, 10, 100) + 0.02 * np.random.random(100) data_test = np.array([[x1, x2, gen_data(x1, x2)] for x1, x2 in zip(x1_test, x2_test)]) return data_train, data_testtrain, test = load_data()# train的前两列是x,后一列是y,这里的y有随机噪声x_train, y_train = train[:, :2], train[:, 2]x_test, y_test = test[:, :2], test[:, 2] # 同上,但这里的y没有噪声# 回归部分def try_different_method(model, method): model.fit(x_train, y_train) score = model.score(x_test, y_test) result = model.predict(x_test) plt.figure() plt.plot(np.arange(len(result)), y_test, "go-", label="True value") plt.plot(np.arange(len(result)), result, "ro-", label="Predict value") plt.title(f"method:{method}---score:{score}") plt.legend(loc="best") plt.show()# 方法选择# 1.决策树回归from sklearn import treemodel_decision_tree_regression = tree.DecisionTreeRegressor()# 2.线性回归from sklearn.linear_model import LinearRegressionmodel_linear_regression = LinearRegression()# 3.SVM回归from sklearn import svmmodel_svm = svm.SVR()# 4.kNN回归from sklearn import neighborsmodel_k_neighbor = neighbors.KNeighborsRegressor()# 5.随机森林回归from sklearn import ensemblemodel_random_forest_regressor = ensemble.RandomForestRegressor(n_estimators=20) # 使用20个决策树# 6.Adaboost回归from sklearn import ensemblemodel_adaboost_regressor = ensemble.AdaBoostRegressor(n_estimators=50) # 这里使用50个决策树# 7.GBRT回归from sklearn import ensemblemodel_gradient_boosting_regressor = ensemble.GradientBoostingRegressor(n_estimators=100) # 这里使用100个决策树# 8.Bagging回归from sklearn import ensemblemodel_bagging_regressor = ensemble.BaggingRegressor()# 9.ExtraTree极端随机数回归from sklearn.tree import ExtraTreeRegressormodel_extra_tree_regressor = ExtraTreeRegressor() |







