zoukankan      html  css  js  c++  java
  • AssociatedObject关联对象原理实现

    介绍

    关联对象(AssociatedObject)是Objective-C 2.0运行时的一个特性,允许开发者对已经存在的类在扩展中添加自定义的属性。在实际生产过程中,比较常用的方式是给分类(Category)添加成员变量。

    例子

    #import <objc/runtime.h>
    
    @interface NSObject (AssociatedObject)
    
    @property (nonatomic, strong) id property;
    
    @end
    
    @implementation NSObject (AssociatedObject)
    @dynamic property;
    
    - (id)property {
        return objc_getAssociatedObject(self, _cmd);
    }
    
    - (void)setProperty:(NSString *)property {
        objc_setAssociatedObject(self, @selector(property), property, OBJC_ASSOCIATION_RETAIN_NONATOMIC);
    }
    
    @end
    

    通过实现代码可以稍微分析下,objc_getAssociatedObject 拿着不变的指针地址(示例传入selector作为参数,实际是void*),从实例中获取需要的对象。objc_setAssociatedObject 根据传入的参数协议,保存指定的对象。

    参数协议

    typedef OBJC_ENUM(uintptr_t, objc_AssociationPolicy) {
        OBJC_ASSOCIATION_ASSIGN = 0,           /**< Specifies a weak reference to the associated object. */
        OBJC_ASSOCIATION_RETAIN_NONATOMIC = 1, /**< Specifies a strong reference to the associated object. The association is not made atomically. */
        OBJC_ASSOCIATION_COPY_NONATOMIC = 3,   /**< Specifies that the associated object is copied. The association is not made atomically. */
        OBJC_ASSOCIATION_RETAIN = 01401,       /**< Specifies a strong reference to the associated object. The association is made atomically. */
        OBJC_ASSOCIATION_COPY = 01403          /**< Specifies that the associated object is copied. The association is made atomically. */
    };
    

    其实这五个协议就是我们平时定义属性时使用的,需要注意的是,虽然苹果在注释中说 OBJC_ASSOCIATION_ASSIGN 相当于一个 weak reference,但其实等于 assign/unsafe_unretained

    对于与weak的区别不在本文讨论范围内,浅显的区别在于变量释放后,weak 会把引用置空,unsafe_unretained会保留内存地址,一旦获取可能会野指针闪退。

    总结

    我们知道,如果类要添加变量,只有在objc_allocateClassPairobjc_registerClassPair之间addIvar。等类注册后,变量结构就不允许再被改变,这是为了防止两个相同类的实例拥有不同变量导致运行困惑。

    那么在runtime时给实例添加变量,又不改变类内部变量结构,关联对象就是一个比较好的做法。


    关联对象的实现

    外部方法

    //Sets an associated value for a given object using a given key and association policy.
    void objc_setAssociatedObject(id object, const void * key, id value, objc_AssociationPolicy policy);
    
    //Returns the value associated with a given object for a given key.
    id objc_getAssociatedObject(id object, const void * key);
    
    //Removes all associations for a given object.
    void objc_removeAssociatedObjects(id object);
    

    相比刚刚例子中的用法,多了一个objc_removeAssociatedObjects,那么可不可以用这个方法来删除不用的关联对象呢?

    苹果的文档中解释说这个方法主要用来还原对象到类初始的状态,会移除所有的关联,包括其他模块添加的,因此应该用 objc_setAssociatedObject(..,nil,..) 的方式去卸载。


    Setter实现

    objc_setAssociatedObject实际调用的是_object_set_associative_reference

    void _object_set_associative_reference(id object, void *key, id value, uintptr_t policy) {
        // retain the new value (if any) outside the lock.
        ObjcAssociation old_association(0, nil);
        id new_value = value ? acquireValue(value, policy) : nil;
        {
            AssociationsManager manager;
            AssociationsHashMap &associations(manager.associations());
            disguised_ptr_t disguised_object = DISGUISE(object);
            if (new_value) {
                // break any existing association.
                AssociationsHashMap::iterator i = associations.find(disguised_object);
                if (i != associations.end()) {
                    // secondary table exists
                    ObjectAssociationMap *refs = i->second;
                    ObjectAssociationMap::iterator j = refs->find(key);
                    if (j != refs->end()) {
                        old_association = j->second;
                        j->second = ObjcAssociation(policy, new_value);
                    } else {
                        (*refs)[key] = ObjcAssociation(policy, new_value);
                    }
                } else {
                    // create the new association (first time).
                    ObjectAssociationMap *refs = new ObjectAssociationMap;
                    associations[disguised_object] = refs;
                    (*refs)[key] = ObjcAssociation(policy, new_value);
                    object->setHasAssociatedObjects();
                }
            } else {
                // setting the association to nil breaks the association.
                AssociationsHashMap::iterator i = associations.find(disguised_object);
                if (i !=  associations.end()) {
                    ObjectAssociationMap *refs = i->second;
                    ObjectAssociationMap::iterator j = refs->find(key);
                    if (j != refs->end()) {
                        old_association = j->second;
                        refs->erase(j);
                    }
                }
            }
        }
        // release the old value (outside of the lock).
        if (old_association.hasValue()) ReleaseValue()(old_association);
    }
    

    内存管理

    static id acquireValue(id value, uintptr_t policy) {
        switch (policy & 0xFF) {
        case OBJC_ASSOCIATION_SETTER_RETAIN:
            return objc_retain(value);
        case OBJC_ASSOCIATION_SETTER_COPY:
            return ((id(*)(id, SEL))objc_msgSend)(value, SEL_copy);
        }
        return value;
    }
    
    static void releaseValue(id value, uintptr_t policy) {
        if (policy & OBJC_ASSOCIATION_SETTER_RETAIN) {
            return objc_release(value);
        }
    }
    
    ObjcAssociation old_association(0, nil);
    id new_value = value ? acquireValue(value, policy) : nil;
    {
        old_association = ...
    }
    if (old_association.hasValue()) ReleaseValue()(old_association);
    

    我们摘出与对象内存相关的代码仔细分析下,首先把新传入的对象,根据协议进行retain/copy,在赋值的过程中获取旧值,在方法结束前release


    赋值

    AssociationsManager manager;
    AssociationsHashMap &associations(manager.associations());
    disguised_ptr_t disguised_object = DISGUISE(object);
    if (new_value) {
        //需要赋值
        AssociationsHashMap::iterator i = associations.find(disguised_object);
        if (i != associations.end()) {
            //找到了这个对象的关联表
            ObjectAssociationMap *refs = i->second;
            ObjectAssociationMap::iterator j = refs->find(key);
            if (j != refs->end()) {
                //找到了这个key的关联对象
                old_association = j->second;
                j->second = ObjcAssociation(policy, new_value);
            } else {
                //没找到,新增一个关联
                (*refs)[key] = ObjcAssociation(policy, new_value);
            }
        } else {
            //没找到,创建一个新的关联表
            ObjectAssociationMap *refs = new ObjectAssociationMap;
            associations[disguised_object] = refs;
            (*refs)[key] = ObjcAssociation(policy, new_value);
            object->setHasAssociatedObjects();
        }
    }
    

    先了解一下AssociationsManagerAssociationsHashMap

    class AssociationsManager {
        static AssociationsHashMap *_map;
    public:
        AssociationsHashMap &associations() {
            if (_map == NULL)
                _map = new AssociationsHashMap();
            return *_map;
        }
    };
    
    class AssociationsHashMap : public unordered_map<disguised_ptr_t, ObjectAssociationMap *, DisguisedPointerHash, DisguisedPointerEqual, AssociationsHashMapAllocator>;
    
    class ObjectAssociationMap : public std::map<void *, ObjcAssociation, ObjectPointerLess, ObjectAssociationMapAllocator>;
    

    AssociationsManager通过一个以指针地址为主键,值为关联表的哈希表,来管理应用内所有的关联对象。

    首先以对象的指针地址去寻找关联表,再通过指定的键值查找关联关系,从而获取关联对象。

    删除

    AssociationsHashMap::iterator i = associations.find(disguised_object);
    if (i !=  associations.end()) {
        ObjectAssociationMap *refs = i->second;
        ObjectAssociationMap::iterator j = refs->find(key);
        if (j != refs->end()) {
            old_association = j->second;
            refs->erase(j);
        }
    }
    

    和修改方法类似,找到关联关系后,执行哈希表的erase方法删除。


    Getter实现

    objc_getAssociatedObject实际调用的是_object_get_associative_reference

    id _object_get_associative_reference(id object, void *key) {
        id value = nil;
        uintptr_t policy = OBJC_ASSOCIATION_ASSIGN;
        {
            AssociationsManager manager;
            AssociationsHashMap &associations(manager.associations());
            disguised_ptr_t disguised_object = DISGUISE(object);
            AssociationsHashMap::iterator i = associations.find(disguised_object);
            if (i != associations.end()) {
                ObjectAssociationMap *refs = i->second;
                ObjectAssociationMap::iterator j = refs->find(key);
                if (j != refs->end()) {
                    ObjcAssociation &entry = j->second;
                    value = entry.value();
                    policy = entry.policy();
                    if (policy & OBJC_ASSOCIATION_GETTER_RETAIN) {
                        objc_retain(value);
                    }
                }
            }
        }
        if (value && (policy & OBJC_ASSOCIATION_GETTER_AUTORELEASE)) {
            objc_autorelease(value);
        }
        return value;
    }
    

    查找哈希表的方法和Setter一样,区别在于如果策略中需要retain和autorelease的话,都需要处理。那么是怎么约定这些策略呢?

    enum { 
        OBJC_ASSOCIATION_SETTER_ASSIGN      = 0,
        OBJC_ASSOCIATION_SETTER_RETAIN      = 1,
        OBJC_ASSOCIATION_SETTER_COPY        = 3,            // NOTE:  both bits are set, so we can simply test 1 bit in releaseValue below.
        OBJC_ASSOCIATION_GETTER_READ        = (0 << 8), 
        OBJC_ASSOCIATION_GETTER_RETAIN      = (1 << 8), 
        OBJC_ASSOCIATION_GETTER_AUTORELEASE = (2 << 8)
    }; 
    
    typedef OBJC_ENUM(uintptr_t, objc_AssociationPolicy) {
        OBJC_ASSOCIATION_ASSIGN = 0,
        OBJC_ASSOCIATION_RETAIN_NONATOMIC = 1,
        OBJC_ASSOCIATION_COPY_NONATOMIC = 3,
        OBJC_ASSOCIATION_RETAIN = 01401, 
        OBJC_ASSOCIATION_COPY = 01403
    };
    

    OBJC_ASSOCIATION_RETAIN = 01401,其中01401开头是0,所以是八进制数字,翻译为二进制就是0000 0011 0000 0001,取位判断就是OBJC_ASSOCIATION_SETTER_RETAIN OBJC_ASSOCIATION_GETTER_RETAIN OBJC_ASSOCIATION_GETTER_AUTORELEASE

    在保存的时候,需要retain,在获取的时候,需要先retain增加引用计数,再执行autorelease等待释放,从而实现原子性。

    Remove实现

    objc_removeAssociatedObjects会判断对象是否存在关联,然后再执行_object_set_associative_reference

    void _object_remove_assocations(id object) {
        vector< ObjcAssociation,ObjcAllocator<ObjcAssociation> > elements;
        {
            AssociationsManager manager;
            AssociationsHashMap &associations(manager.associations());
            if (associations.size() == 0) return;
            disguised_ptr_t disguised_object = DISGUISE(object);
            AssociationsHashMap::iterator i = associations.find(disguised_object);
            if (i != associations.end()) {
                // copy all of the associations that need to be removed.
                ObjectAssociationMap *refs = i->second;
                for (ObjectAssociationMap::iterator j = refs->begin(), end = refs->end(); j != end; ++j) {
                    elements.push_back(j->second);
                }
                // remove the secondary table.
                delete refs;
                associations.erase(i);
            }
        }
        // the calls to releaseValue() happen outside of the lock.
        for_each(elements.begin(), elements.end(), ReleaseValue());
    }
    

    实现方式也可以看出为什么在介绍里不推荐使用,因为会遍历所有的关联对象,并且全部释放,可能会造成别的模块功能缺陷。

    判断关联对象

    比较有意思的是判断对象是否有关联对象的实现。

    inline bool objc_object::hasAssociatedObjects()
    {
        if (isTaggedPointer()) return true;
        if (isa.nonpointer) return isa.has_assoc;
        return true;
    }
    
    inline void objc_object::setHasAssociatedObjects()
    {
        if (isTaggedPointer()) return;
    
     retry:
        isa_t oldisa = LoadExclusive(&isa.bits);
        isa_t newisa = oldisa;
        if (!newisa.nonpointer  ||  newisa.has_assoc) {
            ClearExclusive(&isa.bits);
            return;
        }
        newisa.has_assoc = true;
        if (!StoreExclusive(&isa.bits, oldisa.bits, newisa.bits)) goto retry;
    }
    

    默认返回的结果都是true,只有在64位系统下,才保存一个标记位。这么处理我推测是为了加快释放周期速度,在析构对象时,会根据这个方法判断是否需要释放关联对象。试想如果每次都查询哈希表,执行效率必定会降低,不如都先通过,之后再做处理。

    关于nonpointer不在本文介绍范围内,简单描述为在64位系统下,指针地址保存不仅仅为内存地址,还存有其他标记信息,包括本文涉及的has_assoc

    taggedPointer是一种优化策略,把简单的数字或字符串信息直接保存在指针地址中,从而不申请额外内存加快运行效率。

    总结

    关联对象的实现不复杂,保存的方式为一个全局的哈希表,存取都通过查询表找到关联来执行。哈希表的特点就是牺牲空间换取时间,所以执行速度也可以保证。


    问答

    关联对象有什么应用?

    关联对象可以在运行时给指定对象绑定一个有生命周期的变量。

    1.由于不改变原类的实现,所以可以给原生类或者是打包的库进行扩展,一般配合Category实现完整的功能。

    2.ObjC类定义的变量,由于runtime的特性,都会暴露到外部,使用关联对象可以隐藏关键变量,保证安全。

    3.可以用于KVO,使用关联对象作为观察者,可以避免观察自身导致循环。

    系统如何管理关联对象?

    系统通过管理一个全局哈希表,通过对象指针地址和传递的固定参数地址来获取关联对象。根据setter传入的参数协议,来管理对象的生命周期。

    其被释放的时候需要手动将其指针置空么?

    当对象被释放时,如果设置的协议是OBJC_ASSOCIATION_ASSIGN,那么他的关联对象不会减少引用计数,其他的协议都会减少从而释放关联对象。

    unsafe_unretain一般认为外部有对象控制,所以对象不用处理,因此不管什么协议,对象释放时都无需手动讲关联对象置空。

  • 相关阅读:
    MySQL修改root密码的多种方法
    AES和RSA算法的demo代码
    网卡
    Socket
    Opentracing 链路追踪
    TCP连接三次握手
    MongoDB 使用B树
    MySQL的DDL、DML、DCL
    MySQL 数据同步
    SSO(单点登录)与CAS
  • 原文地址:https://www.cnblogs.com/vanch/p/9725139.html
Copyright © 2011-2022 走看看