zoukankan      html  css  js  c++  java
  • DP 剪枝

    DP其实也是和搜索一样可以有剪枝的,昨晚看到一个超级好的DP剪枝题:(HDU - 5009)

    N段东东,要染色,每次给一个区间染色需要的花费为  该区间颜色总数的平方。  每一段只能被染一次色。求 最少花费将所有区间染色。 N<=500000;

     

    这题也是很容易想到方程:F[j] 表示前i段的最小花费,F[j]=min{F[k]+sum[k+1][j]} (k<i) 。  复杂度为O(N^2),但是数据范围大的BT。。所以需要优化。而本题貌似没法用一个辅助数组来草。。所以需要从题目本身的限制条件出发找到优化

    优化A:首先对于一个长度为len的区间,我每次只染一小段,也只要len^2的花费,所以转移的时候,当k不断减小时,颜色也越来越多,当颜色的总数为cnt时,最后一次染色的花费是cnt*cnt,显然如果cnt*cnt>=i的话,还不如直接每次只染一小段,所以循环就可以停止了。

    优化B:比如数据3 4 2 4 4 2 4 3 2 2。 现在要求F[9],当k减少到6的时候,最后一次染色的区域是[4 3 2 2]。有3种颜色,那就太亏了。因为之前是[3 4 2 4 4 2],这些如果跟着一起涂,那么仍然是3^2的代价,但前面的数字变少了,显然这种更优。。  所以 假设 求F[i]的时候, 前面的颜色为 [ [...]z x y x] ,那么 k枚举到左边那个x 的位置的时候,肯定还不如最后一次把那个x也一起涂掉,也就是肯定不比k枚举到z的时候优。。所以就可以把左边那个x给删掉,具体删除的话就用一个双向链表。也就是如果有多个x,只要保留最右边的那个x就可以。

     

    优化的核心代码:

     1         dp[0] = 0, pre[0] = -1;
     2         for (int i = 1; i <= n; i++) {
     3             if (!mp.count(a[i])) mp[a[i]] = i;
     4             else {
     5                 int id = mp[a[i]];
     6                 nxt[pre[id]] = nxt[id];
     7                 pre[nxt[id]] = pre[id];
     8                 mp[a[i]] = i;
     9             }
    10  
    11             int cnt = 0;
    12             for (int j = pre[i]; j != -1; j = pre[j]) {
    13                 cnt++;
    14                 dp[i] = min(dp[i], dp[j] + cnt * cnt);
    15                 if (cnt * cnt > i)
    16                     break;
    17             }
    18         }

    可以参考代码出处http://www.2cto.com/kf/201410/340390.html 

  • 相关阅读:
    js json和对象互相转换
    github配置和git学习
    sea.js,spm学习
    less学习-语法(二)
    less学习-浏览器端编译(一)
    grunt-mac上安装运行构建工具的总结(一)
    Advice from an Old Programmer
    scikit-FEM-例2-用Morley元在方形区域上解板弯曲问题
    scikit-FEM-例1-求解Possion边值问题
    在shell脚本中调用sqlplus 分类: H2_ORACLE 2013-06-23 13:01 1437人阅读 评论(0) 收藏
  • 原文地址:https://www.cnblogs.com/vb4896/p/4020174.html
Copyright © 2011-2022 走看看