给出$P(<=10^9)$, 求有多少个有序三元组$(a, b, c), gcd(a, b, c) = 1, a + b + c <= P$且以它们构成的三角形中存在某个角是另外一个角的两倍。
题解:
不妨设$a,b,c$所对的角分别是$A,B,C$且$C = 2*A$.
根据正弦定理
$$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$$
$$frac{a}{sin A} = frac{b}{sin (pi-3A)} = frac{c}{sin 2A}$$
$$frac{a}{sin A} = frac{b}{sin 3A} = frac{c}{sin 2A}$$
$$frac{a}{sin A} = frac{b}{3 sin A - 4sin^3 A} = frac{c}{2sin A cos A}$$
$$a = frac{b}{3 - 4sin^2 A} = frac{c}{2 cos A}$$ $$a = frac{b}{4cos^2 A - 1} = frac{c}{2 cos A}$$
可以得到$cos A = frac{c}{2a}$ 代入$frac{b}{4cos^2 A - 1}$得$a*(a+b)=c^2$
上面的推导是充要的。
易得$gcd(a, b) = 1, 否则gcd(a, b, c)
e 1$, 所以还有$gcd(a, a + b) = 1$。
因此$a$和$a+b$都是完全平方数。不妨设$a = u^2$, $a + b = v^2$.
还要满足构成三角形的条件 :
$$a+b>c Rightarrow v^2 > uv 显然成立$$
$$a+c>b Rightarrow u^2+uv>v^2-u^2 Rightarrow 2u^2+uv-v^2>0 Rightarrow u > frac{v}{2}$$
$$a+b+c <= P Rightarrow v^2+uv<=P Rightarrow u <= frac{P-v^2}{u}$$
所以得出做法: 枚举v,则有$u>frac{v}{2}+1 , u < v , u <= frac{P-v^2}{u}$ 且$gcd(u, v) = 1$.
根据$v$的质因子容斥一下求出所有合法的u个数即可。