zoukankan      html  css  js  c++  java
  • 爬取豆瓣网评论最多的书籍

    相信很多人都有书荒的时候,想要找到一本合适的书籍确实不容易,所以这次利用刚学习到的知识爬取豆瓣网的各类书籍,传送门https://book.douban.com/tag/?view=cloud

    首先是这个程序的结构,html_downloader是html下载器,html_outputer是导出到Excel表,html_parser是解析页面,make_wordcloud是制作词云,spided_main是程序入口,url_manager是URL管理器,有兴趣的童鞋可以去慕课网看paython基础爬虫课程。

    主要实现思路是先请求下载需要的html,解析得到目标URL并存储到URL管理器中,再从URL管理器中获取得到URL,发送请求,解析得到需要的信息内容,导出到Excel表格,再重Excel表中获取数据进行分析得到词云。

    html_downloader:

    在这里我使用的是urllib.request进行请求,之前有试过用request进行请求,但是爬取了几百页就被封了ip,所以弃用request。

    # -*- coding:utf8 -*-
    import urllib.request
    from urllib.parse import quote
    import string
    
    
    class HtmlDownloader(object):
    
        def download(self,url):
            if url is None:
                return  None
            s = quote(url, safe=string.printable) #url里有中文需要添加这一句,不然乱码
            response = urllib.request.urlopen(s)
    
            if response.getcode()!= 200: 
                return None
    
            return  response.read()  #返回内容
    

    通过分析豆瓣网的结构,可以看到,我们首先传进去的是总的图书分类,但是我们需要的是每一个分类里面的图书信息。所以我们需要得到每一个分类的url,即base_url,再通过这个base_url去获取图书url,即detail_url。

    url_manager:

    # -*- coding:utf8 -*-
    
    class UrlManage(object):
        def __init__(self):
            self.base_urls = set()  #基本分类的URL
            self.detail_urls = set() #详细内容页的URL
            self.old_base_urls = set() #已经爬取过的url
            self.old_detail_urls = set()#已经爬取过的url

      #添加单个url def add_base_url(self,url): if url is None: return if url not in self.base_urls and url not in self.old_base_urls: self.base_urls.add(url) def add_detail_url(self,url): if url is None: return if url not in self.detail_urls and url not in self.old_detail_urls: self.detail_urls.add(url) # print(self.detail_urls) # 添加多个url def add_new_detail_urls(self, urls): if urls is None or len(urls) == 0: return for url in urls: self.add_detail_url(url) def add_new_base_urls(self, urls): if urls is None or len(urls) == 0: return for url in urls: self.add_base_url(url)
      #判断是否还有url def has_new_detail_url(self): return len(self.detail_urls)!=0 def has_new_base_url(self): return len(self.base_urls)!=0
      #得到一个新的url def get_base_url(self): new_base_url = self.base_urls.pop() self.old_base_urls.add(new_base_url) return new_base_url def get_detail_url(self): new_detail_url = self.detail_urls.pop() self.old_detail_urls.add(new_detail_url) return new_detail_url

     

    解析器 html_parser:

    # -*- coding:utf8 -*-
    import re
    from urllib.parse import urlparse
    from bs4 import BeautifulSoup
    
    
    class HtmlParser(object):
        def soup(cont):
            soups = BeautifulSoup(cont, 'html.parser', from_encoding='utf-8')
            return soups
    
      #得到具体的data数据 def get_new_data(soup): dict = {} if (soup.select('.subject-list')[0].contents): li = soup.select('.subject-list')[0].select('.subject-item') di = {} for i in li: bookname = i.select('.info')[0].select('a')[0].attrs['title'] # 书名 comment = i.select('.clearfix')[0].select('.pl')[0].text comment = re.findall('d+', comment)[0] di[bookname] = comment if di: # 返回的字典不为空的时候 dict.update(di) return dict # 得到详细内容的url def get_detail_url(base_url): detail_urls = set() for k in range(0, 501, 20): if (k == 0): urls = base_url # print(urls) else: urls = base_url + '?start={}&type=T'.format(k) # print(urls) detail_urls.add(urls) return detail_urls # 得到所有的baseurl def get_all_base_urls(soup): links = soup.select('.tagCol')[0].select('a') base_urls = set() for link in links: new_full_url = 'https://book.douban.com{}'.format(link.attrs['href']) # HtmlParser.get_detail_url(new_full_url) base_urls.add(new_full_url) return base_urls def parser(cont): soup = BeautifulSoup(cont, 'html.parser', from_encoding='utf-8') base_urls = HtmlParser.get_all_base_urls(soup) return base_urls

      

    spided_main:

    # -*- coding:utf8 -*-
    from douban_spider2 import url_manager, html_downloader, html_parser, html_outputer
    
    class SpiderMain(object):
        def __init__(self):
            self.urls = url_manager.UrlManage()
            self.downloader = html_downloader.HtmlDownloader()
            self.htmlparser = html_parser.HtmlParser
            self.outputer = html_outputer.HtmlOutputer()
    
        def craw(self,root_url):
            count = 1
            dictdata = {}
            cont = self.downloader.download(root_url)
            base_urls = self.htmlparser.parser(cont)
            self.urls.add_new_base_urls(base_urls)
            while self.urls.has_new_base_url():
                try:
                    base_url = self.urls.get_base_url()
                    detail_urls = self.htmlparser.get_detail_url(base_url)
                    self.urls.add_new_detail_urls(detail_urls)
                except:
                    print('craw failed')
    
            while self.urls.has_new_detail_url():
                try:
                    detail_url = self.urls.get_detail_url()
                    print ('crow %d : %s'%(count,detail_url))
                    html_cont = self.downloader.download(detail_url)
                    soup = self.htmlparser.soup(html_cont)
                    dict = self.htmlparser.get_new_data(soup)
                    dictdata.update(dict)
                    if count == 1000:    #因为之前有被封过ip,所以这里先爬取前1000条detail_url的内容
                        break
    
                    count = count + 1
                except:
                    print ('craw failed')
    
            self.outputer.output_excel(dictdata)
    
    
    #程序入口 if __name__=="__main__": url = 'https://book.douban.com/tag/?view=cloud' obj_spider = SpiderMain() obj_spider.craw(url)

      

    html_outputer:

    # -*- coding:utf8 -*-
    import xlwt  #写入Excel表的库
    
    class HtmlOutputer(object):
        def __init__(self):
            self.datas =[]
    
        def output_excel(self, dict):
            di = dict
            wbk = xlwt.Workbook(encoding='utf-8')
            sheet = wbk.add_sheet("wordCount")  # Excel单元格名字
            k = 0
            for i in di.items():
                sheet.write(k, 0, label=i[0])
                sheet.write(k, 1, label=i[1])
                k = k + 1
            wbk.save('wordCount.xls')  # 保存为 wordCount.xls文件  

    导出的Excel表格格式为,一共导出15261条记录

    make_wordcloud:

    # -*- coding:utf8 -*-
    from wordcloud import WordCloud
    import matplotlib.pyplot as plt
    import xlrd
    from PIL import Image,ImageSequence
    import numpy as np
    
    file = xlrd.open_workbook('wordCount.xls')
    sheet = file.sheet_by_name('wordCount')
    list = {}
    for i in range(sheet.nrows):
        rows = sheet.row_values(i)
        tu = {}
        tu[rows[0]]= int(rows[1])
        list.update(tu)
    print(list)
    
    image= Image.open('./08.png')
    graph = np.array(image)
    wc = WordCloud(font_path='./fonts/simhei.ttf',background_color='white',max_words=20000, max_font_size=50, min_font_size=1,mask=graph, random_state=100)
    wc.generate_from_frequencies(list)
    plt.figure()
    # 以下代码显示图片
    plt.imshow(wc)
    plt.axis("off")
    plt.show()
    

    爬过的坑:

    当定义的类有构造函数时候,调用时一定要加上括号,如 f =  html_downloader.HtmlDownloader().download(),而不是 f=  html_downloader.HtmlDownloader.download(),不然就会一直报错,类似于TypeError: get_all_base_urls() takes 1 positional argument but 2 were given。

    生成词云的背景图片我选用的是

    最后的做出由15261本书形成的词云

           本次爬虫只是针对图书类热门评论而做出的词云,可以看到涵盖所有分类的书籍里最热门评论的有解忧杂货店,白夜行等,据此我们可以选取比较热门的图书进行阅读,也可以根据此结果再做进一步的分析,获取热门书籍中的评论进行分析人们对于某本书的评价关键词,从而进一步的了解这本图书所描述的内容。

  • 相关阅读:
    [Erlang 0106] Erlang实现Apple Push Notifications消息推送
    一场推理的盛宴
    [Erlang 0105] Erlang Resources 小站 2013年1月~6月资讯合集
    [Erlang 0104] 当Erlang遇到Solr
    [Erlang 0103] Erlang Resources 资讯小站
    history.go(-1)和History.back()的区别
    [Java代码] Java用pinyin4j根据汉语获取各种格式和需求的拼音
    spring中context:property-placeholder/元素
    Java中的异常处理:何时抛出异常,何时捕获异常?
    用Jersey构建RESTful服务1--HelloWorld
  • 原文地址:https://www.cnblogs.com/veol/p/8886240.html
Copyright © 2011-2022 走看看