zoukankan      html  css  js  c++  java
  • Paired t-test

    1 Continuous Dependent Variable with normal distribution

    1 (2 Level) Categorical Independent Variable

     

     

    Task Completion time

    Subject

    Interface 1

    Interface 2

    1

    12.9

    16

    2

    5.7

    7.5

    3

    16

    16

    4

    14.3

    15.7

    5

    2.4

    13.2

    A paired t-test measures whether means from a within-subjects test group vary over 2 test conditions. The paired t-test is commonly used to compare a sample group’s scores before and after an intervention. In HCI practice, the paired t-test is also commonly used to compare how a group of subjects perform in two different test conditions [12].

    In ‘Tradeoffs in Displaying Peripheral Information’ [7], Maglio and Campbell test distraction level of peripheral displays. As part of the experiment, test subjects perform a complex editing task. The performance measure is the number of correct edits they complete. In a second condition, subjects also periodically monitor a peripheral display containing miscellaneous news headlines. The performance measure in the second condition incorporates the number of news headlines they remember.

    The research team tests whether there is a significant difference in the number of edits the subjects’ complete in condition 1 (no peripheral display present) and condition 2 (peripheral display present). They demonstrate a valid application of the paired t-test in their analysis. First, the paired t-test is applicable when measuring how a static group of subjects perform in two conditions, and this requirement is met. Second, the paired t-test is appropriate when the independent variable is dichotomous. In their experiment, the two test conditions, (presence of a peripheral display or lack thereof) fulfill the requirement. Score on the editing task serves as the continuous dependent variable. Finally, 29 subjects participate in the experiment, so the research team is marginally safe in assuming the dependent variable followed a normal distribution (the central limit theorem proves distribution is normal with a sample size of 30 or more). The research team finds a significant difference in the number of edits completed in the two test conditions.

    The paired t-test is similar to the repeated measures ANOVA test. Both can be used to compare how a static group performs in varying test conditions. The difference is that the paired t-test is used when the independent variable has two levels. Repeated measures ANOVA is used when the independent variable has more than two levels. So, for example, if the researchers had tested three conditions, the appropriate test would have been repeated measures ANOVA rather than a paired t-test.

    Values to report:

    ·        t value

    ·        degrees of freedom

    ·        p value

  • 相关阅读:
    yarn之安装依赖包
    Yarn 的工作流-创建一个新项目
    yarn使用
    yarn安装
    用yarn替代npm
    搭建开发环境
    网页瞬间转换成桌面应用级程序(IOS/Win/Linux)
    [转]js模块化编程之彻底弄懂CommonJS和AMD/CMD!
    Node.js模块导出exports 和 module.exports 的区别
    Javascript modules--js 模块化
  • 原文地址:https://www.cnblogs.com/vigorz/p/10499190.html
Copyright © 2011-2022 走看看