zoukankan      html  css  js  c++  java
  • 排序算法概述

    名词解释:

    n:数据规模

    k:“桶”的个数

    In-place:占用常数内存,不占用额外内存

    Out-place:占用额外内存

    稳定性:排序后 2 个相等键值的顺序和排序之前它们的顺序相同

    冒泡排序

    冒泡排序(Bubble Sort),它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序。

    算法步骤

    1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

    2. 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

    3. 针对所有的元素重复以上的步骤,除了最后一个。

    4. 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

    选择排序

    选择排序是一种简单直观的排序算法,无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。唯一的好处可能就是不占用额外的内存空间。

    算法步骤

    1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置

    2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

    3. 重复第二步,直到所有元素均排序完毕。

    插入排序

    插入排序,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

    插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。

    算法步骤

    1. 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

    2. 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

    希尔排序 

    希尔排序,也称递减增量排序算法,是插入排序的一种更高效的改进版本。但希尔排序是非稳定排序算法。

    希尔排序是基于插入排序的以下两点性质而提出改进方法的:

    • 插入排序在对几乎已经排好序的数据操作时,效率高,即可以达到线性排序的效率;

    • 但插入排序一般来说是低效的,因为插入排序每次只能将数据移动一位;

    希尔排序的基本思想是:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。

    算法步骤

    1. 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;(gap=legth/2)

    2. 按增量序列个数 k,对序列进行 k 趟排序;

    3. 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。

    归并排序

    该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

    归并排序的实现由两种方法:

    • 自上而下的递归(所有递归的方法都可以用迭代重写);

    • 自下而上的迭代;

    算法步骤

    1. 把长度为n的输入序列分成两个长度为n/2的子序列;
    2. 对这两个子序列分别采用归并排序;
    3. 将两个排序好的子序列合并成一个最终的排序序列。

     

    快速排序

    通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

    算法步骤

    快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

    1. 从数列中挑出一个元素,称为 “基准”(pivot);
    2. 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
    3. 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。

     

    堆排序

    堆排序是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

    1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列;

    2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列;

    堆排序的平均时间复杂度为 Ο(nlogn)。

    算法步骤

    1. 创建一个堆 H[0……n-1];

    2. 把堆首(最大值)和堆尾互换;

    3. 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;

    4. 重复步骤 2,直到堆的尺寸为 1。

    计数排序

    计数排序是一种非比较型整数排序算法,核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。

    作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

    桶排序

    桶排序是计数排序的升级版,是一种非比较型整数排序算法。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

    为了使桶排序更加高效,我们需要做到这两点:桶值范围=(最大值-最小值+1)/桶数

    1. 在额外空间充足的情况下,尽量增大桶的数量

    2. 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中

    同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

    算法步骤

    1. 设置一个定量的数组当作空桶;
    2. 遍历输入数据,并且把数据一个一个放到对应的桶里去;
    3. 对每个不是空的桶进行排序;
    4. 从不是空的桶里把排好序的数据拼接起来。 

    基数排序

    基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

    由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

    算法步骤

    1. 取得数组中的最大数,并取得位数;
    2. arr为原始数组,从最低位开始取每个位组成radix数组;
    3. 对radix进行计数排序(利用计数排序适用于小范围数的特点);

    基数排序 vs 计数排序 vs 桶排序

    这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

    • 计数排序:每个桶只存储单一键值

    • 桶排序:每个桶存储一定范围的数值;

    • 基数排序:根据键值的每位数字来分配桶;
  • 相关阅读:
    EasyUI中datagrid的行编辑模式中,找到特定的Editor,并为其添加事件
    easyui datagrid plunges 扩展 插件
    jQuery EasyUI DataGrid Checkbox 数据设定与取值
    Easyui Tree方法扩展
    记账凭证
    部分扩展功能总结
    凭证
    voucer
    Box2D 一、学习资料(库、pdf)
    EUI EXML内部类Skin和ItemRenderer
  • 原文地址:https://www.cnblogs.com/wade-luffy/p/5755514.html
Copyright © 2011-2022 走看看