zoukankan      html  css  js  c++  java
  • 目标检测数据增强,旋转方法

    # 旋转
      def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.):
      '''
      参考:https://blog.csdn.net/u014540717/article/details/53301195crop_rate
      输入:
      img:图像array,(h,w,c)
      bboxes:该图像包含的所有boundingboxs,一个list,每个元素为[x_min, y_min, x_max, y_max],要确保是数值
      angle:旋转角度
      scale:默认1
      输出:
      rot_img:旋转后的图像array
      rot_bboxes:旋转后的boundingbox坐标list
      '''
      #---------------------- 旋转图像 ----------------------
      w = img.shape[1]
      h = img.shape[0]
      # 角度变弧度
      rangle = np.deg2rad(angle) # angle in radians
      # now calculate new image width and height
      nw = (abs(np.sin(rangle)*h) + abs(np.cos(rangle)*w))*scale
      nh = (abs(np.cos(rangle)*h) + abs(np.sin(rangle)*w))*scale
      # ask OpenCV for the rotation matrix
      rot_mat = cv2.getRotationMatrix2D((nw*0.5, nh*0.5), angle, scale)
      # calculate the move from the old center to the new center combined
      # with the rotation
      rot_move = np.dot(rot_mat, np.array([(nw-w)*0.5, (nh-h)*0.5,0]))
      # the move only affects the translation, so update the translation
      # part of the transform
      rot_mat[0,2] += rot_move[0]
      rot_mat[1,2] += rot_move[1]
      # 仿射变换
      rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4)
       
      #---------------------- 矫正bbox坐标 ----------------------
      # rot_mat是最终的旋转矩阵
      # 获取原始bbox的四个中点,然后将这四个点转换到旋转后的坐标系下
      rot_bboxes = list()
      for bbox in bboxes:
      xmin = bbox[0]
      ymin = bbox[1]
      xmax = bbox[2]
      ymax = bbox[3]
      point1 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymin, 1]))
      point2 = np.dot(rot_mat, np.array([xmax, (ymin+ymax)/2, 1]))
      point3 = np.dot(rot_mat, np.array([(xmin+xmax)/2, ymax, 1]))
      point4 = np.dot(rot_mat, np.array([xmin, (ymin+ymax)/2, 1]))
      # 合并np.array
      concat = np.vstack((point1, point2, point3, point4))
      # 改变array类型
      concat = concat.astype(np.int32)
      # 得到旋转后的坐标
      rx, ry, rw, rh = cv2.boundingRect(concat)
      rx_min = rx
      ry_min = ry
      rx_max = rx+rw
      ry_max = ry+rh
      # 加入list中
      rot_bboxes.append([rx_min, ry_min, rx_max, ry_max])
       
      return rot_img, rot_bboxes

    参考链接:https://github.com/maozezhong/CV_ToolBox/blob/master/DataAugForObjectDetection/DataAugmentForObejctDetection.py

  • 相关阅读:
    DocKer 创建容器 镜像端口映射失败
    Window中的Docker 拉取Mysql镜像 并在本地Navicate链接
    Mysql之主从复制
    Nginx 实现负载均衡
    如何将composer设置为全局变量?
    Linux安装telnet
    LINUX 安装扩展(笔记)
    PHP 开发 APP 接口 学习笔记与总结
    504 Gateway Time-out
    Luogu P1542包裹快递【实数域二分】 By cellur925
  • 原文地址:https://www.cnblogs.com/walktosee/p/10374820.html
Copyright © 2011-2022 走看看