zoukankan      html  css  js  c++  java
  • Spark之SparkSql

    -- Spark SQL 以编程方式指定模式
    val sqlContext = new org.apache.spark.sql.SQLContext(sc)
    val employee = sc.textFile("/root/wangbin/employee.txt")
    1201,satish,25
    1202,krishna,28
    1203,amith,39
    1204,javed,23
    1205,prudvi,23
    val schemaString = "id,name,age"
    import org.apache.spark.sql.Row;
    import org.apache.spark.sql.types.{StructType, StructField, StringType};
    val schema = StructType(schemaString.split(",").map(fieldName => StructField(fieldName, StringType, true)))
    val rowRDD = employee.map(_.split(",")).map(e => Row(e(0), e(1), e(2)))
    -- 通过使用roRDDdata和模式(SCHEMA)变量创建DataFrame。
    val employeeDF = sqlContext.createDataFrame(rowRDD, schema)
    -- 使用以下命令将数据帧存储到名为employee的表中。
    employeeDF.registerTempTable("employee2")
    -- 使用以下语句从employee表中选择所有记录。
    val allrecords = sqlContext.sql("SELECT * FROM employee2")
    -- 查看所有记录数据帧的结果数据
    allrecords.show()
    +----+-------+---+
    |  id|   name|age|
    +----+-------+---+
    |1201| satish| 25|
    |1202|krishna| 28|
    |1203|  amith| 39|
    |1204|  javed| 23|
    |1205| prudvi| 23|
    +----+-------+---+
  • 相关阅读:
    Max_connect_errors – MySQL性能参数详解
    python qt
    Topo图
    ECSHOP报错误Deprecated: preg_replace(): The /e modifier is depr
    Socat
    Tomcat多次部署
    Android进程守护
    mysql将字符转换成数字
    Oracle sql查询
    ZOJ 题目2859 Matrix Searching(二维RMQ)
  • 原文地址:https://www.cnblogs.com/wangbin2188/p/8252678.html
Copyright © 2011-2022 走看看