zoukankan      html  css  js  c++  java
  • SVM实用操作: svmtrain and svmclassify

    1 load fisheriris
    2 data = [meas(:,1), meas(:,2)];
    3 groups = ismember(species,'setosa');
    4 [train, test] = crossvalind('holdOut',groups);
    5 cp = classperf(groups);
    6 svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
    7 
    8 classes = svmclassify(svmStruct,data(test,:),'showplot',true);
    9 classperf(cp,classes,test);

    svmstruct = svmtrain(Training, Group)

    Rows of TRAINING correspond to observations; columns correspond to features. Y is a column vector that contains the known class labels for TRAINING.

    Y is a grouping variable, i.e., it can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a

    class label (see help for groupingvariable). Each element of Y specifies the group the corresponding row of TRAINING belongs to.

    TRAINING and Y must have the same number of rows. SVMSTRUCT contains information about the trained classifier, including the support vectors, that

    is used by SVMCLASSIFY for classification. svmtrain treats NaNs, empty strings or 'undefined' values as missing values and ignores the corresponding

    rows in TRAINING and Y.

    Group = svmclassify(SVMStruct, Sample)

    >> help svmclassify
     svmclassify Classify data using a support vector machine
        GROUP = svmclassify(SVMSTRUCT, TEST) classifies each row in TEST using the support vector machine classifier structure SVMSTRUCT created
        using SVMTRAIN, and returns the predicted class level GROUP. TEST must have the same number of columns as the data used to train the

        classifier in SVMTRAIN. GROUP indicates the group to which each row of TEST is assigned.
     
        GROUP = svmclassify(...,'SHOWPLOT',true) plots the test data TEST on the figure created using the SHOWPLOT option in SVMTRAIN.

    -----------------------------------------------------------------------------------------------

    -----------------------------------------------------------------------------------------------

    利用libsvm做多分类问题的经典案例:

    [y, x] = libsvmread('iris.scale.txt');
    m = svmtrain(y, x, '-t 0');
    test_y=[1;2;3];
    test_x=[-0.555556 0.25 -0.864407 -0.916667;
    0.444444 -0.0833334 0.322034 0.166667 ;
    -0.277778 -0.333333 0.322034 0.583333 ];
    [predict_label, accuracy, prob_estimates] = svmpredict(test_y, test_x, m);
    数据:'iris.scale'可在Libsvm网站上有。共有三类。

    iris.scale.txt 文档为:
    
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.898305 4:-0.916667
    1 1:-0.833333 2:-0.0833334 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.333333 3:-0.864407 4:-0.916667
    1 1:-0.388889 2:0.583333 3:-0.762712 4:-0.75
    1 1:-0.833333 2:0.166667 3:-0.864407 4:-0.833333
    1 1:-0.611111 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.944444 2:-0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.388889 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.722222 2:0.166667 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-1
    1 1:-1 2:-0.166667 3:-0.966102 4:-1
    1 1:-0.166667 2:0.666667 3:-0.932203 4:-0.916667
    1 1:-0.222222 2:1 3:-0.830508 4:-0.75
    1 1:-0.388889 2:0.583333 3:-0.898305 4:-0.75
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.833333
    1 1:-0.222222 2:0.5 3:-0.762712 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.830508 4:-0.833333
    1 1:-0.388889 2:0.166667 3:-0.762712 4:-0.916667
    1 1:-0.555556 2:0.416667 3:-0.830508 4:-0.75
    1 1:-0.833333 2:0.333333 3:-1 4:-0.916667
    1 1:-0.555556 2:0.0833333 3:-0.762712 4:-0.666667
    1 1:-0.722222 2:0.166667 3:-0.694915 4:-0.916667
    1 1:-0.611111 2:-0.166667 3:-0.79661 4:-0.916667
    1 1:-0.611111 2:0.166667 3:-0.79661 4:-0.75
    1 1:-0.5 2:0.25 3:-0.830508 4:-0.916667
    1 1:-0.5 2:0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.0833334 3:-0.79661 4:-0.916667
    1 1:-0.388889 2:0.166667 3:-0.830508 4:-0.75
    1 1:-0.5 2:0.75 3:-0.830508 4:-1
    1 1:-0.333333 2:0.833333 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.611111 3:-0.932203 4:-0.916667
    1 1:-0.333333 2:0.25 3:-0.898305 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.944444 2:-0.166667 3:-0.898305 4:-0.916667
    1 1:-0.555556 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.898305 4:-0.833333
    1 1:-0.888889 2:-0.75 3:-0.898305 4:-0.833333
    1 1:-0.944444 3:-0.898305 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.79661 4:-0.583333
    1 1:-0.555556 2:0.5 3:-0.694915 4:-0.75
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.79661 4:-0.916667
    1 1:-0.833333 3:-0.864407 4:-0.916667
    1 1:-0.444444 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.0833333 3:-0.864407 4:-0.916667
    2 1:0.5 3:0.254237 4:0.0833333
    2 1:0.166667 3:0.186441 4:0.166667
    2 1:0.444444 2:-0.0833334 3:0.322034 4:0.166667
    2 1:-0.333333 2:-0.75 3:0.0169491 4:-4.03573e-08
    2 1:0.222222 2:-0.333333 3:0.220339 4:0.166667
    2 1:-0.222222 2:-0.333333 3:0.186441 4:-4.03573e-08
    2 1:0.111111 2:0.0833333 3:0.254237 4:0.25
    2 1:-0.666667 2:-0.666667 3:-0.220339 4:-0.25
    2 1:0.277778 2:-0.25 3:0.220339 4:-4.03573e-08
    2 1:-0.5 2:-0.416667 3:-0.0169491 4:0.0833333
    2 1:-0.611111 2:-1 3:-0.152542 4:-0.25
    2 1:-0.111111 2:-0.166667 3:0.0847457 4:0.166667
    2 1:-0.0555556 2:-0.833333 3:0.0169491 4:-0.25
    2 1:-1.32455e-07 2:-0.25 3:0.254237 4:0.0833333
    2 1:-0.277778 2:-0.25 3:-0.118644 4:-4.03573e-08
    2 1:0.333333 2:-0.0833334 3:0.152542 4:0.0833333
    2 1:-0.277778 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.166667 2:-0.416667 3:0.0508474 4:-0.25
    2 1:0.0555554 2:-0.833333 3:0.186441 4:0.166667
    2 1:-0.277778 2:-0.583333 3:-0.0169491 4:-0.166667
    2 1:-0.111111 3:0.288136 4:0.416667
    2 1:-1.32455e-07 2:-0.333333 3:0.0169491 4:-4.03573e-08
    2 1:0.111111 2:-0.583333 3:0.322034 4:0.166667
    2 1:-1.32455e-07 2:-0.333333 3:0.254237 4:-0.0833333
    2 1:0.166667 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:0.277778 2:-0.166667 3:0.152542 4:0.0833333
    2 1:0.388889 2:-0.333333 3:0.288136 4:0.0833333
    2 1:0.333333 2:-0.166667 3:0.355932 4:0.333333
    2 1:-0.0555556 2:-0.25 3:0.186441 4:0.166667
    2 1:-0.222222 2:-0.5 3:-0.152542 4:-0.25
    2 1:-0.333333 2:-0.666667 3:-0.0508475 4:-0.166667
    2 1:-0.333333 2:-0.666667 3:-0.0847458 4:-0.25
    2 1:-0.166667 2:-0.416667 3:-0.0169491 4:-0.0833333
    2 1:-0.0555556 2:-0.416667 3:0.38983 4:0.25
    2 1:-0.388889 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.0555556 2:0.166667 3:0.186441 4:0.25
    2 1:0.333333 2:-0.0833334 3:0.254237 4:0.166667
    2 1:0.111111 2:-0.75 3:0.152542 4:-4.03573e-08
    2 1:-0.277778 2:-0.166667 3:0.0508474 4:-4.03573e-08
    2 1:-0.333333 2:-0.583333 3:0.0169491 4:-4.03573e-08
    2 1:-0.333333 2:-0.5 3:0.152542 4:-0.0833333
    2 1:-1.32455e-07 2:-0.166667 3:0.220339 4:0.0833333
    2 1:-0.166667 2:-0.5 3:0.0169491 4:-0.0833333
    2 1:-0.611111 2:-0.75 3:-0.220339 4:-0.25
    2 1:-0.277778 2:-0.416667 3:0.0847457 4:-4.03573e-08
    2 1:-0.222222 2:-0.166667 3:0.0847457 4:-0.0833333
    2 1:-0.222222 2:-0.25 3:0.0847457 4:-4.03573e-08
    2 1:0.0555554 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:-0.555556 2:-0.583333 3:-0.322034 4:-0.166667
    2 1:-0.222222 2:-0.333333 3:0.0508474 4:-4.03573e-08
    3 1:0.111111 2:0.0833333 3:0.694915 4:1
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.555555 2:-0.166667 3:0.661017 4:0.666667
    3 1:0.111111 2:-0.25 3:0.559322 4:0.416667
    3 1:0.222222 2:-0.166667 3:0.627119 4:0.75
    3 1:0.833333 2:-0.166667 3:0.898305 4:0.666667
    3 1:-0.666667 2:-0.583333 3:0.186441 4:0.333333
    3 1:0.666667 2:-0.25 3:0.79661 4:0.416667
    3 1:0.333333 2:-0.583333 3:0.627119 4:0.416667
    3 1:0.611111 2:0.333333 3:0.728813 4:1
    3 1:0.222222 3:0.38983 4:0.583333
    3 1:0.166667 2:-0.416667 3:0.457627 4:0.5
    3 1:0.388889 2:-0.166667 3:0.525424 4:0.666667
    3 1:-0.222222 2:-0.583333 3:0.355932 4:0.583333
    3 1:-0.166667 2:-0.333333 3:0.38983 4:0.916667
    3 1:0.166667 3:0.457627 4:0.833333
    3 1:0.222222 2:-0.166667 3:0.525424 4:0.416667
    3 1:0.888889 2:0.5 3:0.932203 4:0.75
    3 1:0.888889 2:-0.5 3:1 4:0.833333
    3 1:-0.0555556 2:-0.833333 3:0.355932 4:0.166667
    3 1:0.444444 3:0.59322 4:0.833333
    3 1:-0.277778 2:-0.333333 3:0.322034 4:0.583333
    3 1:0.888889 2:-0.333333 3:0.932203 4:0.583333
    3 1:0.111111 2:-0.416667 3:0.322034 4:0.416667
    3 1:0.333333 2:0.0833333 3:0.59322 4:0.666667
    3 1:0.611111 3:0.694915 4:0.416667
    3 1:0.0555554 2:-0.333333 3:0.288136 4:0.416667
    3 1:-1.32455e-07 2:-0.166667 3:0.322034 4:0.416667
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.666667
    3 1:0.611111 2:-0.166667 3:0.627119 4:0.25
    3 1:0.722222 2:-0.333333 3:0.728813 4:0.5
    3 1:1 2:0.5 3:0.830508 4:0.583333
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.75
    3 1:0.111111 2:-0.333333 3:0.38983 4:0.166667
    3 1:-1.32455e-07 2:-0.5 3:0.559322 4:0.0833333
    3 1:0.888889 2:-0.166667 3:0.728813 4:0.833333
    3 1:0.111111 2:0.166667 3:0.559322 4:0.916667
    3 1:0.166667 2:-0.0833334 3:0.525424 4:0.416667
    3 1:-0.0555556 2:-0.166667 3:0.288136 4:0.416667
    3 1:0.444444 2:-0.0833334 3:0.491525 4:0.666667
    3 1:0.333333 2:-0.0833334 3:0.559322 4:0.916667
    3 1:0.444444 2:-0.0833334 3:0.38983 4:0.833333
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.388889 3:0.661017 4:0.833333
    3 1:0.333333 2:0.0833333 3:0.59322 4:1
    3 1:0.333333 2:-0.166667 3:0.423729 4:0.833333
    3 1:0.111111 2:-0.583333 3:0.355932 4:0.5
    3 1:0.222222 2:-0.166667 3:0.423729 4:0.583333
    3 1:0.0555554 2:0.166667 3:0.491525 4:0.833333
    3 1:-0.111111 2:-0.166667 3:0.38983 4:0.416667 
    View Code
  • 相关阅读:
    【Win10开发】相对布局——RelativePanel控件
    【Win10开发】关于AutoSuggestBox
    【Win10开发】自定义标题栏
    线上服务器CPU100%排查
    Rest接口单元测试
    hibernate validator参数校验&自定义校验注解
    JsonView视图
    跨域(SpringBoot)
    Mybatis的分支选择和In循环
    CentOS6.5使用yum安装mysql
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5202675.html
Copyright © 2011-2022 走看看