zoukankan      html  css  js  c++  java
  • SVM实用操作: svmtrain and svmclassify

    1 load fisheriris
    2 data = [meas(:,1), meas(:,2)];
    3 groups = ismember(species,'setosa');
    4 [train, test] = crossvalind('holdOut',groups);
    5 cp = classperf(groups);
    6 svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
    7 
    8 classes = svmclassify(svmStruct,data(test,:),'showplot',true);
    9 classperf(cp,classes,test);

    svmstruct = svmtrain(Training, Group)

    Rows of TRAINING correspond to observations; columns correspond to features. Y is a column vector that contains the known class labels for TRAINING.

    Y is a grouping variable, i.e., it can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a

    class label (see help for groupingvariable). Each element of Y specifies the group the corresponding row of TRAINING belongs to.

    TRAINING and Y must have the same number of rows. SVMSTRUCT contains information about the trained classifier, including the support vectors, that

    is used by SVMCLASSIFY for classification. svmtrain treats NaNs, empty strings or 'undefined' values as missing values and ignores the corresponding

    rows in TRAINING and Y.

    Group = svmclassify(SVMStruct, Sample)

    >> help svmclassify
     svmclassify Classify data using a support vector machine
        GROUP = svmclassify(SVMSTRUCT, TEST) classifies each row in TEST using the support vector machine classifier structure SVMSTRUCT created
        using SVMTRAIN, and returns the predicted class level GROUP. TEST must have the same number of columns as the data used to train the

        classifier in SVMTRAIN. GROUP indicates the group to which each row of TEST is assigned.
     
        GROUP = svmclassify(...,'SHOWPLOT',true) plots the test data TEST on the figure created using the SHOWPLOT option in SVMTRAIN.

    -----------------------------------------------------------------------------------------------

    -----------------------------------------------------------------------------------------------

    利用libsvm做多分类问题的经典案例:

    [y, x] = libsvmread('iris.scale.txt');
    m = svmtrain(y, x, '-t 0');
    test_y=[1;2;3];
    test_x=[-0.555556 0.25 -0.864407 -0.916667;
    0.444444 -0.0833334 0.322034 0.166667 ;
    -0.277778 -0.333333 0.322034 0.583333 ];
    [predict_label, accuracy, prob_estimates] = svmpredict(test_y, test_x, m);
    数据:'iris.scale'可在Libsvm网站上有。共有三类。

    iris.scale.txt 文档为:
    
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.898305 4:-0.916667
    1 1:-0.833333 2:-0.0833334 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.333333 3:-0.864407 4:-0.916667
    1 1:-0.388889 2:0.583333 3:-0.762712 4:-0.75
    1 1:-0.833333 2:0.166667 3:-0.864407 4:-0.833333
    1 1:-0.611111 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.944444 2:-0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.388889 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.722222 2:0.166667 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-1
    1 1:-1 2:-0.166667 3:-0.966102 4:-1
    1 1:-0.166667 2:0.666667 3:-0.932203 4:-0.916667
    1 1:-0.222222 2:1 3:-0.830508 4:-0.75
    1 1:-0.388889 2:0.583333 3:-0.898305 4:-0.75
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.833333
    1 1:-0.222222 2:0.5 3:-0.762712 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.830508 4:-0.833333
    1 1:-0.388889 2:0.166667 3:-0.762712 4:-0.916667
    1 1:-0.555556 2:0.416667 3:-0.830508 4:-0.75
    1 1:-0.833333 2:0.333333 3:-1 4:-0.916667
    1 1:-0.555556 2:0.0833333 3:-0.762712 4:-0.666667
    1 1:-0.722222 2:0.166667 3:-0.694915 4:-0.916667
    1 1:-0.611111 2:-0.166667 3:-0.79661 4:-0.916667
    1 1:-0.611111 2:0.166667 3:-0.79661 4:-0.75
    1 1:-0.5 2:0.25 3:-0.830508 4:-0.916667
    1 1:-0.5 2:0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.0833334 3:-0.79661 4:-0.916667
    1 1:-0.388889 2:0.166667 3:-0.830508 4:-0.75
    1 1:-0.5 2:0.75 3:-0.830508 4:-1
    1 1:-0.333333 2:0.833333 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.611111 3:-0.932203 4:-0.916667
    1 1:-0.333333 2:0.25 3:-0.898305 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.944444 2:-0.166667 3:-0.898305 4:-0.916667
    1 1:-0.555556 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.898305 4:-0.833333
    1 1:-0.888889 2:-0.75 3:-0.898305 4:-0.833333
    1 1:-0.944444 3:-0.898305 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.79661 4:-0.583333
    1 1:-0.555556 2:0.5 3:-0.694915 4:-0.75
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.79661 4:-0.916667
    1 1:-0.833333 3:-0.864407 4:-0.916667
    1 1:-0.444444 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.0833333 3:-0.864407 4:-0.916667
    2 1:0.5 3:0.254237 4:0.0833333
    2 1:0.166667 3:0.186441 4:0.166667
    2 1:0.444444 2:-0.0833334 3:0.322034 4:0.166667
    2 1:-0.333333 2:-0.75 3:0.0169491 4:-4.03573e-08
    2 1:0.222222 2:-0.333333 3:0.220339 4:0.166667
    2 1:-0.222222 2:-0.333333 3:0.186441 4:-4.03573e-08
    2 1:0.111111 2:0.0833333 3:0.254237 4:0.25
    2 1:-0.666667 2:-0.666667 3:-0.220339 4:-0.25
    2 1:0.277778 2:-0.25 3:0.220339 4:-4.03573e-08
    2 1:-0.5 2:-0.416667 3:-0.0169491 4:0.0833333
    2 1:-0.611111 2:-1 3:-0.152542 4:-0.25
    2 1:-0.111111 2:-0.166667 3:0.0847457 4:0.166667
    2 1:-0.0555556 2:-0.833333 3:0.0169491 4:-0.25
    2 1:-1.32455e-07 2:-0.25 3:0.254237 4:0.0833333
    2 1:-0.277778 2:-0.25 3:-0.118644 4:-4.03573e-08
    2 1:0.333333 2:-0.0833334 3:0.152542 4:0.0833333
    2 1:-0.277778 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.166667 2:-0.416667 3:0.0508474 4:-0.25
    2 1:0.0555554 2:-0.833333 3:0.186441 4:0.166667
    2 1:-0.277778 2:-0.583333 3:-0.0169491 4:-0.166667
    2 1:-0.111111 3:0.288136 4:0.416667
    2 1:-1.32455e-07 2:-0.333333 3:0.0169491 4:-4.03573e-08
    2 1:0.111111 2:-0.583333 3:0.322034 4:0.166667
    2 1:-1.32455e-07 2:-0.333333 3:0.254237 4:-0.0833333
    2 1:0.166667 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:0.277778 2:-0.166667 3:0.152542 4:0.0833333
    2 1:0.388889 2:-0.333333 3:0.288136 4:0.0833333
    2 1:0.333333 2:-0.166667 3:0.355932 4:0.333333
    2 1:-0.0555556 2:-0.25 3:0.186441 4:0.166667
    2 1:-0.222222 2:-0.5 3:-0.152542 4:-0.25
    2 1:-0.333333 2:-0.666667 3:-0.0508475 4:-0.166667
    2 1:-0.333333 2:-0.666667 3:-0.0847458 4:-0.25
    2 1:-0.166667 2:-0.416667 3:-0.0169491 4:-0.0833333
    2 1:-0.0555556 2:-0.416667 3:0.38983 4:0.25
    2 1:-0.388889 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.0555556 2:0.166667 3:0.186441 4:0.25
    2 1:0.333333 2:-0.0833334 3:0.254237 4:0.166667
    2 1:0.111111 2:-0.75 3:0.152542 4:-4.03573e-08
    2 1:-0.277778 2:-0.166667 3:0.0508474 4:-4.03573e-08
    2 1:-0.333333 2:-0.583333 3:0.0169491 4:-4.03573e-08
    2 1:-0.333333 2:-0.5 3:0.152542 4:-0.0833333
    2 1:-1.32455e-07 2:-0.166667 3:0.220339 4:0.0833333
    2 1:-0.166667 2:-0.5 3:0.0169491 4:-0.0833333
    2 1:-0.611111 2:-0.75 3:-0.220339 4:-0.25
    2 1:-0.277778 2:-0.416667 3:0.0847457 4:-4.03573e-08
    2 1:-0.222222 2:-0.166667 3:0.0847457 4:-0.0833333
    2 1:-0.222222 2:-0.25 3:0.0847457 4:-4.03573e-08
    2 1:0.0555554 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:-0.555556 2:-0.583333 3:-0.322034 4:-0.166667
    2 1:-0.222222 2:-0.333333 3:0.0508474 4:-4.03573e-08
    3 1:0.111111 2:0.0833333 3:0.694915 4:1
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.555555 2:-0.166667 3:0.661017 4:0.666667
    3 1:0.111111 2:-0.25 3:0.559322 4:0.416667
    3 1:0.222222 2:-0.166667 3:0.627119 4:0.75
    3 1:0.833333 2:-0.166667 3:0.898305 4:0.666667
    3 1:-0.666667 2:-0.583333 3:0.186441 4:0.333333
    3 1:0.666667 2:-0.25 3:0.79661 4:0.416667
    3 1:0.333333 2:-0.583333 3:0.627119 4:0.416667
    3 1:0.611111 2:0.333333 3:0.728813 4:1
    3 1:0.222222 3:0.38983 4:0.583333
    3 1:0.166667 2:-0.416667 3:0.457627 4:0.5
    3 1:0.388889 2:-0.166667 3:0.525424 4:0.666667
    3 1:-0.222222 2:-0.583333 3:0.355932 4:0.583333
    3 1:-0.166667 2:-0.333333 3:0.38983 4:0.916667
    3 1:0.166667 3:0.457627 4:0.833333
    3 1:0.222222 2:-0.166667 3:0.525424 4:0.416667
    3 1:0.888889 2:0.5 3:0.932203 4:0.75
    3 1:0.888889 2:-0.5 3:1 4:0.833333
    3 1:-0.0555556 2:-0.833333 3:0.355932 4:0.166667
    3 1:0.444444 3:0.59322 4:0.833333
    3 1:-0.277778 2:-0.333333 3:0.322034 4:0.583333
    3 1:0.888889 2:-0.333333 3:0.932203 4:0.583333
    3 1:0.111111 2:-0.416667 3:0.322034 4:0.416667
    3 1:0.333333 2:0.0833333 3:0.59322 4:0.666667
    3 1:0.611111 3:0.694915 4:0.416667
    3 1:0.0555554 2:-0.333333 3:0.288136 4:0.416667
    3 1:-1.32455e-07 2:-0.166667 3:0.322034 4:0.416667
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.666667
    3 1:0.611111 2:-0.166667 3:0.627119 4:0.25
    3 1:0.722222 2:-0.333333 3:0.728813 4:0.5
    3 1:1 2:0.5 3:0.830508 4:0.583333
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.75
    3 1:0.111111 2:-0.333333 3:0.38983 4:0.166667
    3 1:-1.32455e-07 2:-0.5 3:0.559322 4:0.0833333
    3 1:0.888889 2:-0.166667 3:0.728813 4:0.833333
    3 1:0.111111 2:0.166667 3:0.559322 4:0.916667
    3 1:0.166667 2:-0.0833334 3:0.525424 4:0.416667
    3 1:-0.0555556 2:-0.166667 3:0.288136 4:0.416667
    3 1:0.444444 2:-0.0833334 3:0.491525 4:0.666667
    3 1:0.333333 2:-0.0833334 3:0.559322 4:0.916667
    3 1:0.444444 2:-0.0833334 3:0.38983 4:0.833333
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.388889 3:0.661017 4:0.833333
    3 1:0.333333 2:0.0833333 3:0.59322 4:1
    3 1:0.333333 2:-0.166667 3:0.423729 4:0.833333
    3 1:0.111111 2:-0.583333 3:0.355932 4:0.5
    3 1:0.222222 2:-0.166667 3:0.423729 4:0.583333
    3 1:0.0555554 2:0.166667 3:0.491525 4:0.833333
    3 1:-0.111111 2:-0.166667 3:0.38983 4:0.416667 
    View Code
  • 相关阅读:
    立个铁矿石的flag,从7月初开始,铁矿石的库存,可能要进入累库存阶段了.
    让你的 vs code 跑在云上,用手机浏览器就能写代码
    ASP.NET Core 2 High Performance 目录和读书笔记
    [转帖]无网络离线安装 vs2017
    centos下 .net core 2.0 升级 到 2.1 遇到的一个小问题
    .net core jwt 入门记录
    GTX 750TI 使用 ffmpeg 时无法用 GPU HEVC(h.265) 进行加速
    [翻译] 编写高性能 .NET 代码--第二章 GC -- 减少大对象堆的碎片,在某些情况下强制执行完整GC,按需压缩大对象堆,在GC前收到消息通知,使用弱引用缓存对象
    [翻译] 编写高性能 .NET 代码--第二章 GC -- 将长生命周期对象和大对象池化
    [翻译] 编写高性能 .NET 代码--第二章 GC -- 避免使用终结器,避免大对象,避免复制缓冲区
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5202675.html
Copyright © 2011-2022 走看看