zoukankan      html  css  js  c++  java
  • SVM实用操作: svmtrain and svmclassify

    1 load fisheriris
    2 data = [meas(:,1), meas(:,2)];
    3 groups = ismember(species,'setosa');
    4 [train, test] = crossvalind('holdOut',groups);
    5 cp = classperf(groups);
    6 svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
    7 
    8 classes = svmclassify(svmStruct,data(test,:),'showplot',true);
    9 classperf(cp,classes,test);

    svmstruct = svmtrain(Training, Group)

    Rows of TRAINING correspond to observations; columns correspond to features. Y is a column vector that contains the known class labels for TRAINING.

    Y is a grouping variable, i.e., it can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a

    class label (see help for groupingvariable). Each element of Y specifies the group the corresponding row of TRAINING belongs to.

    TRAINING and Y must have the same number of rows. SVMSTRUCT contains information about the trained classifier, including the support vectors, that

    is used by SVMCLASSIFY for classification. svmtrain treats NaNs, empty strings or 'undefined' values as missing values and ignores the corresponding

    rows in TRAINING and Y.

    Group = svmclassify(SVMStruct, Sample)

    >> help svmclassify
     svmclassify Classify data using a support vector machine
        GROUP = svmclassify(SVMSTRUCT, TEST) classifies each row in TEST using the support vector machine classifier structure SVMSTRUCT created
        using SVMTRAIN, and returns the predicted class level GROUP. TEST must have the same number of columns as the data used to train the

        classifier in SVMTRAIN. GROUP indicates the group to which each row of TEST is assigned.
     
        GROUP = svmclassify(...,'SHOWPLOT',true) plots the test data TEST on the figure created using the SHOWPLOT option in SVMTRAIN.

    -----------------------------------------------------------------------------------------------

    -----------------------------------------------------------------------------------------------

    利用libsvm做多分类问题的经典案例:

    [y, x] = libsvmread('iris.scale.txt');
    m = svmtrain(y, x, '-t 0');
    test_y=[1;2;3];
    test_x=[-0.555556 0.25 -0.864407 -0.916667;
    0.444444 -0.0833334 0.322034 0.166667 ;
    -0.277778 -0.333333 0.322034 0.583333 ];
    [predict_label, accuracy, prob_estimates] = svmpredict(test_y, test_x, m);
    数据:'iris.scale'可在Libsvm网站上有。共有三类。

    iris.scale.txt 文档为:
    
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.898305 4:-0.916667
    1 1:-0.833333 2:-0.0833334 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.333333 3:-0.864407 4:-0.916667
    1 1:-0.388889 2:0.583333 3:-0.762712 4:-0.75
    1 1:-0.833333 2:0.166667 3:-0.864407 4:-0.833333
    1 1:-0.611111 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.944444 2:-0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.388889 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.722222 2:0.166667 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-1
    1 1:-1 2:-0.166667 3:-0.966102 4:-1
    1 1:-0.166667 2:0.666667 3:-0.932203 4:-0.916667
    1 1:-0.222222 2:1 3:-0.830508 4:-0.75
    1 1:-0.388889 2:0.583333 3:-0.898305 4:-0.75
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.833333
    1 1:-0.222222 2:0.5 3:-0.762712 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.830508 4:-0.833333
    1 1:-0.388889 2:0.166667 3:-0.762712 4:-0.916667
    1 1:-0.555556 2:0.416667 3:-0.830508 4:-0.75
    1 1:-0.833333 2:0.333333 3:-1 4:-0.916667
    1 1:-0.555556 2:0.0833333 3:-0.762712 4:-0.666667
    1 1:-0.722222 2:0.166667 3:-0.694915 4:-0.916667
    1 1:-0.611111 2:-0.166667 3:-0.79661 4:-0.916667
    1 1:-0.611111 2:0.166667 3:-0.79661 4:-0.75
    1 1:-0.5 2:0.25 3:-0.830508 4:-0.916667
    1 1:-0.5 2:0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.0833334 3:-0.79661 4:-0.916667
    1 1:-0.388889 2:0.166667 3:-0.830508 4:-0.75
    1 1:-0.5 2:0.75 3:-0.830508 4:-1
    1 1:-0.333333 2:0.833333 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.611111 3:-0.932203 4:-0.916667
    1 1:-0.333333 2:0.25 3:-0.898305 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.944444 2:-0.166667 3:-0.898305 4:-0.916667
    1 1:-0.555556 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.898305 4:-0.833333
    1 1:-0.888889 2:-0.75 3:-0.898305 4:-0.833333
    1 1:-0.944444 3:-0.898305 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.79661 4:-0.583333
    1 1:-0.555556 2:0.5 3:-0.694915 4:-0.75
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.79661 4:-0.916667
    1 1:-0.833333 3:-0.864407 4:-0.916667
    1 1:-0.444444 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.0833333 3:-0.864407 4:-0.916667
    2 1:0.5 3:0.254237 4:0.0833333
    2 1:0.166667 3:0.186441 4:0.166667
    2 1:0.444444 2:-0.0833334 3:0.322034 4:0.166667
    2 1:-0.333333 2:-0.75 3:0.0169491 4:-4.03573e-08
    2 1:0.222222 2:-0.333333 3:0.220339 4:0.166667
    2 1:-0.222222 2:-0.333333 3:0.186441 4:-4.03573e-08
    2 1:0.111111 2:0.0833333 3:0.254237 4:0.25
    2 1:-0.666667 2:-0.666667 3:-0.220339 4:-0.25
    2 1:0.277778 2:-0.25 3:0.220339 4:-4.03573e-08
    2 1:-0.5 2:-0.416667 3:-0.0169491 4:0.0833333
    2 1:-0.611111 2:-1 3:-0.152542 4:-0.25
    2 1:-0.111111 2:-0.166667 3:0.0847457 4:0.166667
    2 1:-0.0555556 2:-0.833333 3:0.0169491 4:-0.25
    2 1:-1.32455e-07 2:-0.25 3:0.254237 4:0.0833333
    2 1:-0.277778 2:-0.25 3:-0.118644 4:-4.03573e-08
    2 1:0.333333 2:-0.0833334 3:0.152542 4:0.0833333
    2 1:-0.277778 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.166667 2:-0.416667 3:0.0508474 4:-0.25
    2 1:0.0555554 2:-0.833333 3:0.186441 4:0.166667
    2 1:-0.277778 2:-0.583333 3:-0.0169491 4:-0.166667
    2 1:-0.111111 3:0.288136 4:0.416667
    2 1:-1.32455e-07 2:-0.333333 3:0.0169491 4:-4.03573e-08
    2 1:0.111111 2:-0.583333 3:0.322034 4:0.166667
    2 1:-1.32455e-07 2:-0.333333 3:0.254237 4:-0.0833333
    2 1:0.166667 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:0.277778 2:-0.166667 3:0.152542 4:0.0833333
    2 1:0.388889 2:-0.333333 3:0.288136 4:0.0833333
    2 1:0.333333 2:-0.166667 3:0.355932 4:0.333333
    2 1:-0.0555556 2:-0.25 3:0.186441 4:0.166667
    2 1:-0.222222 2:-0.5 3:-0.152542 4:-0.25
    2 1:-0.333333 2:-0.666667 3:-0.0508475 4:-0.166667
    2 1:-0.333333 2:-0.666667 3:-0.0847458 4:-0.25
    2 1:-0.166667 2:-0.416667 3:-0.0169491 4:-0.0833333
    2 1:-0.0555556 2:-0.416667 3:0.38983 4:0.25
    2 1:-0.388889 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.0555556 2:0.166667 3:0.186441 4:0.25
    2 1:0.333333 2:-0.0833334 3:0.254237 4:0.166667
    2 1:0.111111 2:-0.75 3:0.152542 4:-4.03573e-08
    2 1:-0.277778 2:-0.166667 3:0.0508474 4:-4.03573e-08
    2 1:-0.333333 2:-0.583333 3:0.0169491 4:-4.03573e-08
    2 1:-0.333333 2:-0.5 3:0.152542 4:-0.0833333
    2 1:-1.32455e-07 2:-0.166667 3:0.220339 4:0.0833333
    2 1:-0.166667 2:-0.5 3:0.0169491 4:-0.0833333
    2 1:-0.611111 2:-0.75 3:-0.220339 4:-0.25
    2 1:-0.277778 2:-0.416667 3:0.0847457 4:-4.03573e-08
    2 1:-0.222222 2:-0.166667 3:0.0847457 4:-0.0833333
    2 1:-0.222222 2:-0.25 3:0.0847457 4:-4.03573e-08
    2 1:0.0555554 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:-0.555556 2:-0.583333 3:-0.322034 4:-0.166667
    2 1:-0.222222 2:-0.333333 3:0.0508474 4:-4.03573e-08
    3 1:0.111111 2:0.0833333 3:0.694915 4:1
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.555555 2:-0.166667 3:0.661017 4:0.666667
    3 1:0.111111 2:-0.25 3:0.559322 4:0.416667
    3 1:0.222222 2:-0.166667 3:0.627119 4:0.75
    3 1:0.833333 2:-0.166667 3:0.898305 4:0.666667
    3 1:-0.666667 2:-0.583333 3:0.186441 4:0.333333
    3 1:0.666667 2:-0.25 3:0.79661 4:0.416667
    3 1:0.333333 2:-0.583333 3:0.627119 4:0.416667
    3 1:0.611111 2:0.333333 3:0.728813 4:1
    3 1:0.222222 3:0.38983 4:0.583333
    3 1:0.166667 2:-0.416667 3:0.457627 4:0.5
    3 1:0.388889 2:-0.166667 3:0.525424 4:0.666667
    3 1:-0.222222 2:-0.583333 3:0.355932 4:0.583333
    3 1:-0.166667 2:-0.333333 3:0.38983 4:0.916667
    3 1:0.166667 3:0.457627 4:0.833333
    3 1:0.222222 2:-0.166667 3:0.525424 4:0.416667
    3 1:0.888889 2:0.5 3:0.932203 4:0.75
    3 1:0.888889 2:-0.5 3:1 4:0.833333
    3 1:-0.0555556 2:-0.833333 3:0.355932 4:0.166667
    3 1:0.444444 3:0.59322 4:0.833333
    3 1:-0.277778 2:-0.333333 3:0.322034 4:0.583333
    3 1:0.888889 2:-0.333333 3:0.932203 4:0.583333
    3 1:0.111111 2:-0.416667 3:0.322034 4:0.416667
    3 1:0.333333 2:0.0833333 3:0.59322 4:0.666667
    3 1:0.611111 3:0.694915 4:0.416667
    3 1:0.0555554 2:-0.333333 3:0.288136 4:0.416667
    3 1:-1.32455e-07 2:-0.166667 3:0.322034 4:0.416667
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.666667
    3 1:0.611111 2:-0.166667 3:0.627119 4:0.25
    3 1:0.722222 2:-0.333333 3:0.728813 4:0.5
    3 1:1 2:0.5 3:0.830508 4:0.583333
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.75
    3 1:0.111111 2:-0.333333 3:0.38983 4:0.166667
    3 1:-1.32455e-07 2:-0.5 3:0.559322 4:0.0833333
    3 1:0.888889 2:-0.166667 3:0.728813 4:0.833333
    3 1:0.111111 2:0.166667 3:0.559322 4:0.916667
    3 1:0.166667 2:-0.0833334 3:0.525424 4:0.416667
    3 1:-0.0555556 2:-0.166667 3:0.288136 4:0.416667
    3 1:0.444444 2:-0.0833334 3:0.491525 4:0.666667
    3 1:0.333333 2:-0.0833334 3:0.559322 4:0.916667
    3 1:0.444444 2:-0.0833334 3:0.38983 4:0.833333
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.388889 3:0.661017 4:0.833333
    3 1:0.333333 2:0.0833333 3:0.59322 4:1
    3 1:0.333333 2:-0.166667 3:0.423729 4:0.833333
    3 1:0.111111 2:-0.583333 3:0.355932 4:0.5
    3 1:0.222222 2:-0.166667 3:0.423729 4:0.583333
    3 1:0.0555554 2:0.166667 3:0.491525 4:0.833333
    3 1:-0.111111 2:-0.166667 3:0.38983 4:0.416667 
    View Code
  • 相关阅读:
    Web负载均衡的几种实现方式
    Apache和Nginx的区别
    Nginx和Apache区别
    Git 使用中显示“Another git process seems to be running in this repository...”问题解决
    上传本地代码到gitHub过程详解
    MySQL数据库中varchar与char类型的区别
    正则表达式中/i,/g,/ig,/gi,/m的区别和含义
    内行看门道:看似“佛系”的《QQ炫舞手游》,背后的音频技术一点都不简单
    惧怕羊毛党?腾讯云为你保驾护航
    教你1天搭建自己的“微视”
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5202675.html
Copyright © 2011-2022 走看看