zoukankan      html  css  js  c++  java
  • SVM实用操作: svmtrain and svmclassify

    1 load fisheriris
    2 data = [meas(:,1), meas(:,2)];
    3 groups = ismember(species,'setosa');
    4 [train, test] = crossvalind('holdOut',groups);
    5 cp = classperf(groups);
    6 svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
    7 
    8 classes = svmclassify(svmStruct,data(test,:),'showplot',true);
    9 classperf(cp,classes,test);

    svmstruct = svmtrain(Training, Group)

    Rows of TRAINING correspond to observations; columns correspond to features. Y is a column vector that contains the known class labels for TRAINING.

    Y is a grouping variable, i.e., it can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a

    class label (see help for groupingvariable). Each element of Y specifies the group the corresponding row of TRAINING belongs to.

    TRAINING and Y must have the same number of rows. SVMSTRUCT contains information about the trained classifier, including the support vectors, that

    is used by SVMCLASSIFY for classification. svmtrain treats NaNs, empty strings or 'undefined' values as missing values and ignores the corresponding

    rows in TRAINING and Y.

    Group = svmclassify(SVMStruct, Sample)

    >> help svmclassify
     svmclassify Classify data using a support vector machine
        GROUP = svmclassify(SVMSTRUCT, TEST) classifies each row in TEST using the support vector machine classifier structure SVMSTRUCT created
        using SVMTRAIN, and returns the predicted class level GROUP. TEST must have the same number of columns as the data used to train the

        classifier in SVMTRAIN. GROUP indicates the group to which each row of TEST is assigned.
     
        GROUP = svmclassify(...,'SHOWPLOT',true) plots the test data TEST on the figure created using the SHOWPLOT option in SVMTRAIN.

    -----------------------------------------------------------------------------------------------

    -----------------------------------------------------------------------------------------------

    利用libsvm做多分类问题的经典案例:

    [y, x] = libsvmread('iris.scale.txt');
    m = svmtrain(y, x, '-t 0');
    test_y=[1;2;3];
    test_x=[-0.555556 0.25 -0.864407 -0.916667;
    0.444444 -0.0833334 0.322034 0.166667 ;
    -0.277778 -0.333333 0.322034 0.583333 ];
    [predict_label, accuracy, prob_estimates] = svmpredict(test_y, test_x, m);
    数据:'iris.scale'可在Libsvm网站上有。共有三类。

    iris.scale.txt 文档为:
    
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.898305 4:-0.916667
    1 1:-0.833333 2:-0.0833334 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.333333 3:-0.864407 4:-0.916667
    1 1:-0.388889 2:0.583333 3:-0.762712 4:-0.75
    1 1:-0.833333 2:0.166667 3:-0.864407 4:-0.833333
    1 1:-0.611111 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.944444 2:-0.25 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.388889 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.722222 2:0.166667 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-1
    1 1:-1 2:-0.166667 3:-0.966102 4:-1
    1 1:-0.166667 2:0.666667 3:-0.932203 4:-0.916667
    1 1:-0.222222 2:1 3:-0.830508 4:-0.75
    1 1:-0.388889 2:0.583333 3:-0.898305 4:-0.75
    1 1:-0.555556 2:0.25 3:-0.864407 4:-0.833333
    1 1:-0.222222 2:0.5 3:-0.762712 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.830508 4:-0.833333
    1 1:-0.388889 2:0.166667 3:-0.762712 4:-0.916667
    1 1:-0.555556 2:0.416667 3:-0.830508 4:-0.75
    1 1:-0.833333 2:0.333333 3:-1 4:-0.916667
    1 1:-0.555556 2:0.0833333 3:-0.762712 4:-0.666667
    1 1:-0.722222 2:0.166667 3:-0.694915 4:-0.916667
    1 1:-0.611111 2:-0.166667 3:-0.79661 4:-0.916667
    1 1:-0.611111 2:0.166667 3:-0.79661 4:-0.75
    1 1:-0.5 2:0.25 3:-0.830508 4:-0.916667
    1 1:-0.5 2:0.166667 3:-0.864407 4:-0.916667
    1 1:-0.777778 3:-0.79661 4:-0.916667
    1 1:-0.722222 2:-0.0833334 3:-0.79661 4:-0.916667
    1 1:-0.388889 2:0.166667 3:-0.830508 4:-0.75
    1 1:-0.5 2:0.75 3:-0.830508 4:-1
    1 1:-0.333333 2:0.833333 3:-0.864407 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.611111 3:-0.932203 4:-0.916667
    1 1:-0.333333 2:0.25 3:-0.898305 4:-0.916667
    1 1:-0.666667 2:-0.0833334 3:-0.830508 4:-1
    1 1:-0.944444 2:-0.166667 3:-0.898305 4:-0.916667
    1 1:-0.555556 2:0.166667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.898305 4:-0.833333
    1 1:-0.888889 2:-0.75 3:-0.898305 4:-0.833333
    1 1:-0.944444 3:-0.898305 4:-0.916667
    1 1:-0.611111 2:0.25 3:-0.79661 4:-0.583333
    1 1:-0.555556 2:0.5 3:-0.694915 4:-0.75
    1 1:-0.722222 2:-0.166667 3:-0.864407 4:-0.833333
    1 1:-0.555556 2:0.5 3:-0.79661 4:-0.916667
    1 1:-0.833333 3:-0.864407 4:-0.916667
    1 1:-0.444444 2:0.416667 3:-0.830508 4:-0.916667
    1 1:-0.611111 2:0.0833333 3:-0.864407 4:-0.916667
    2 1:0.5 3:0.254237 4:0.0833333
    2 1:0.166667 3:0.186441 4:0.166667
    2 1:0.444444 2:-0.0833334 3:0.322034 4:0.166667
    2 1:-0.333333 2:-0.75 3:0.0169491 4:-4.03573e-08
    2 1:0.222222 2:-0.333333 3:0.220339 4:0.166667
    2 1:-0.222222 2:-0.333333 3:0.186441 4:-4.03573e-08
    2 1:0.111111 2:0.0833333 3:0.254237 4:0.25
    2 1:-0.666667 2:-0.666667 3:-0.220339 4:-0.25
    2 1:0.277778 2:-0.25 3:0.220339 4:-4.03573e-08
    2 1:-0.5 2:-0.416667 3:-0.0169491 4:0.0833333
    2 1:-0.611111 2:-1 3:-0.152542 4:-0.25
    2 1:-0.111111 2:-0.166667 3:0.0847457 4:0.166667
    2 1:-0.0555556 2:-0.833333 3:0.0169491 4:-0.25
    2 1:-1.32455e-07 2:-0.25 3:0.254237 4:0.0833333
    2 1:-0.277778 2:-0.25 3:-0.118644 4:-4.03573e-08
    2 1:0.333333 2:-0.0833334 3:0.152542 4:0.0833333
    2 1:-0.277778 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.166667 2:-0.416667 3:0.0508474 4:-0.25
    2 1:0.0555554 2:-0.833333 3:0.186441 4:0.166667
    2 1:-0.277778 2:-0.583333 3:-0.0169491 4:-0.166667
    2 1:-0.111111 3:0.288136 4:0.416667
    2 1:-1.32455e-07 2:-0.333333 3:0.0169491 4:-4.03573e-08
    2 1:0.111111 2:-0.583333 3:0.322034 4:0.166667
    2 1:-1.32455e-07 2:-0.333333 3:0.254237 4:-0.0833333
    2 1:0.166667 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:0.277778 2:-0.166667 3:0.152542 4:0.0833333
    2 1:0.388889 2:-0.333333 3:0.288136 4:0.0833333
    2 1:0.333333 2:-0.166667 3:0.355932 4:0.333333
    2 1:-0.0555556 2:-0.25 3:0.186441 4:0.166667
    2 1:-0.222222 2:-0.5 3:-0.152542 4:-0.25
    2 1:-0.333333 2:-0.666667 3:-0.0508475 4:-0.166667
    2 1:-0.333333 2:-0.666667 3:-0.0847458 4:-0.25
    2 1:-0.166667 2:-0.416667 3:-0.0169491 4:-0.0833333
    2 1:-0.0555556 2:-0.416667 3:0.38983 4:0.25
    2 1:-0.388889 2:-0.166667 3:0.186441 4:0.166667
    2 1:-0.0555556 2:0.166667 3:0.186441 4:0.25
    2 1:0.333333 2:-0.0833334 3:0.254237 4:0.166667
    2 1:0.111111 2:-0.75 3:0.152542 4:-4.03573e-08
    2 1:-0.277778 2:-0.166667 3:0.0508474 4:-4.03573e-08
    2 1:-0.333333 2:-0.583333 3:0.0169491 4:-4.03573e-08
    2 1:-0.333333 2:-0.5 3:0.152542 4:-0.0833333
    2 1:-1.32455e-07 2:-0.166667 3:0.220339 4:0.0833333
    2 1:-0.166667 2:-0.5 3:0.0169491 4:-0.0833333
    2 1:-0.611111 2:-0.75 3:-0.220339 4:-0.25
    2 1:-0.277778 2:-0.416667 3:0.0847457 4:-4.03573e-08
    2 1:-0.222222 2:-0.166667 3:0.0847457 4:-0.0833333
    2 1:-0.222222 2:-0.25 3:0.0847457 4:-4.03573e-08
    2 1:0.0555554 2:-0.25 3:0.118644 4:-4.03573e-08
    2 1:-0.555556 2:-0.583333 3:-0.322034 4:-0.166667
    2 1:-0.222222 2:-0.333333 3:0.0508474 4:-4.03573e-08
    3 1:0.111111 2:0.0833333 3:0.694915 4:1
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.555555 2:-0.166667 3:0.661017 4:0.666667
    3 1:0.111111 2:-0.25 3:0.559322 4:0.416667
    3 1:0.222222 2:-0.166667 3:0.627119 4:0.75
    3 1:0.833333 2:-0.166667 3:0.898305 4:0.666667
    3 1:-0.666667 2:-0.583333 3:0.186441 4:0.333333
    3 1:0.666667 2:-0.25 3:0.79661 4:0.416667
    3 1:0.333333 2:-0.583333 3:0.627119 4:0.416667
    3 1:0.611111 2:0.333333 3:0.728813 4:1
    3 1:0.222222 3:0.38983 4:0.583333
    3 1:0.166667 2:-0.416667 3:0.457627 4:0.5
    3 1:0.388889 2:-0.166667 3:0.525424 4:0.666667
    3 1:-0.222222 2:-0.583333 3:0.355932 4:0.583333
    3 1:-0.166667 2:-0.333333 3:0.38983 4:0.916667
    3 1:0.166667 3:0.457627 4:0.833333
    3 1:0.222222 2:-0.166667 3:0.525424 4:0.416667
    3 1:0.888889 2:0.5 3:0.932203 4:0.75
    3 1:0.888889 2:-0.5 3:1 4:0.833333
    3 1:-0.0555556 2:-0.833333 3:0.355932 4:0.166667
    3 1:0.444444 3:0.59322 4:0.833333
    3 1:-0.277778 2:-0.333333 3:0.322034 4:0.583333
    3 1:0.888889 2:-0.333333 3:0.932203 4:0.583333
    3 1:0.111111 2:-0.416667 3:0.322034 4:0.416667
    3 1:0.333333 2:0.0833333 3:0.59322 4:0.666667
    3 1:0.611111 3:0.694915 4:0.416667
    3 1:0.0555554 2:-0.333333 3:0.288136 4:0.416667
    3 1:-1.32455e-07 2:-0.166667 3:0.322034 4:0.416667
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.666667
    3 1:0.611111 2:-0.166667 3:0.627119 4:0.25
    3 1:0.722222 2:-0.333333 3:0.728813 4:0.5
    3 1:1 2:0.5 3:0.830508 4:0.583333
    3 1:0.166667 2:-0.333333 3:0.559322 4:0.75
    3 1:0.111111 2:-0.333333 3:0.38983 4:0.166667
    3 1:-1.32455e-07 2:-0.5 3:0.559322 4:0.0833333
    3 1:0.888889 2:-0.166667 3:0.728813 4:0.833333
    3 1:0.111111 2:0.166667 3:0.559322 4:0.916667
    3 1:0.166667 2:-0.0833334 3:0.525424 4:0.416667
    3 1:-0.0555556 2:-0.166667 3:0.288136 4:0.416667
    3 1:0.444444 2:-0.0833334 3:0.491525 4:0.666667
    3 1:0.333333 2:-0.0833334 3:0.559322 4:0.916667
    3 1:0.444444 2:-0.0833334 3:0.38983 4:0.833333
    3 1:-0.166667 2:-0.416667 3:0.38983 4:0.5
    3 1:0.388889 3:0.661017 4:0.833333
    3 1:0.333333 2:0.0833333 3:0.59322 4:1
    3 1:0.333333 2:-0.166667 3:0.423729 4:0.833333
    3 1:0.111111 2:-0.583333 3:0.355932 4:0.5
    3 1:0.222222 2:-0.166667 3:0.423729 4:0.583333
    3 1:0.0555554 2:0.166667 3:0.491525 4:0.833333
    3 1:-0.111111 2:-0.166667 3:0.38983 4:0.416667 
    View Code
  • 相关阅读:
    根据指定月份,打印该月份所属的季节
    求出1~100之间,既是3又是7的倍数的自然数出现的次数
    打印所有的水仙花数
    升景坊单间短期出租
    找出1000以内的所有完数
    ssh config host
    shell获取ip
    mongodb sharding 简单部署记录
    tcp转发
    openssl和Java的keytool证书相关的命令总结
  • 原文地址:https://www.cnblogs.com/wangxiaocvpr/p/5202675.html
Copyright © 2011-2022 走看看