zoukankan      html  css  js  c++  java
  • 【8.30校内测试】【找规律模拟】【DP】【二分+贪心】

    对于和规律或者数学有关的题真的束手无策啊QAQ

    首先发现两个性质:

    1、不管中间怎么碰撞,所有蚂蚁的相对位置不会改变,即后面的蚂蚁不会超过前面的蚂蚁或者落后更后面的蚂蚁。

    2、因为所有蚂蚁速度一样,不管标号的话两只蚂蚁的碰撞相当于直接互相穿过,所以最初有多少蚂蚁方向向左,最后就有多少蚂蚁从左落下,向右同理。

    总结一下又可以发现,比如有$cntl$只蚂蚁最初向左,$cntr$只蚂蚁最初向右,那么最后就是原位置的左边连续$cntl$只从左落下,原位置右边连续$cntr$只从右落下。我们将所有方向向左和向右的蚂蚁落下的时间分别排序,和原序列上一一对应即可。

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #define LL long long
    using namespace std;
    
    int n, b[100005], cntl, cntr;
    LL a[100005], L;
    double ans[100005], l[100005], r[100005];
    
    int main ( ) {
        freopen ( "ant.in", "r", stdin );
        freopen ( "ant.out", "w", stdout );
        scanf ( "%I64d%d", &L, &n );
        for ( int i = 1; i <= n; i ++ )    scanf ( "%I64d", &a[i] );
        for ( int i = 1; i <= n; i ++ )    scanf ( "%d", &b[i] );
        for ( int i = 1; i <= n; i ++ )
            if ( !b[i] )
                l[++cntl] = a[i];
            else r[++cntr] = L - a[i];
        sort ( l + 1, l + 1 + cntl );
        sort ( r + 1, r + 1 + cntr );
        for ( int i = 1; i <= cntl; i ++ )
            ans[i] = l[i];
        for ( int i = 1; i <= cntr; i ++ )
            ans[n - i + 1] = r[i];
        for ( int i = 1; i <= n; i ++ )
            printf ( "%.2lf ", ans[i] );
        return 0;
    }

     见8.20校内测试,题目转换一下就一模一样了。

    数据比较水,写的$O(nlog_nlog_h)$完全够了。

    二分最小值,$check$的时候贪心修改区间,我用的线段树,判断一下就好了。实际上差分复杂度更优。写线段树的时候无聊写了区间求和??

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #define LL long long
    using namespace std;
    
    int n, K;
    LL T, a[100005];
    
    LL TR[400005], tag[400005], vc[100005];
    
    void update ( int nd ) {
        TR[nd] = TR[nd << 1] + TR[nd << 1 | 1];
    }
    
    void push_down ( int nd, int l, int r ) {
        if ( tag[nd] ) {
            int mid = ( l + r ) >> 1;
            TR[nd << 1] += tag[nd] * ( mid - l + 1 );
            TR[nd << 1 | 1] += tag[nd] * ( r - mid );
            tag[nd << 1] += tag[nd];
            tag[nd << 1 | 1] += tag[nd];
            tag[nd] = 0;
        }
    }
    
    void build ( int nd, int l, int r ) {
        TR[nd] = 0; tag[nd] = 0;
        if ( l == r ) {
            TR[nd] = a[vc[l]];
            return ;
        }
        int mid = ( l + r ) >> 1;
        build ( nd << 1, l, mid );
        build ( nd << 1 | 1, mid + 1, r );
        update ( nd );
    }
    
    void add ( int nd, int l, int r, int L, int R, LL d ) {
        if ( l >= L && r <= R ) {
            TR[nd] += ( r - l + 1 ) * d;
            tag[nd] += d;
            return ;
        }
        push_down ( nd, l, r );
        int mid = ( l + r ) >> 1;
        if ( L <= mid ) add ( nd << 1, l, mid, L, R, d );
        if ( R > mid ) add ( nd << 1 | 1, mid + 1, r, L, R, d );
        update ( nd );
    }
    
    LL query ( int nd, int l, int r, int pos ) {
        if ( l == r ) return TR[nd];
        push_down ( nd, l, r );
        int mid = ( l + r ) >> 1;
        if ( pos <= mid ) return query ( nd << 1, l, mid, pos );
        else return query ( nd << 1 | 1, mid + 1, r, pos );
    }
    
    bool check ( LL mid ) {
        int tot = 0; LL sum = 0;
        for ( int i = 1; i <= n; i ++ )
            if ( a[i] < mid ) vc[++tot] = i;
        build ( 1, 1, tot );
        vc[++tot] = 0x7f7f7f7f7f7f7f;
        for ( int i = 1; i < tot; i ++ ) {
            LL now = query ( 1, 1, tot - 1, i );
            if ( now >= mid ) continue;
            if ( mid - now + sum > T ) { sum = T + 1; break; }
            int to = vc[i] + K - 1;
            int pos = upper_bound ( vc + 1, vc + 1 + tot, to ) - vc - 1;
            add ( 1, 1, tot - 1, i, pos, mid - now );
            sum += mid - now;
        }
        if ( sum <= T ) return 1;
        return 0;
    }
    
    LL MI = 0x3f3f3f3f, MA;
    LL erfen ( ) {
        LL l = MI, r = MA + T, ans;
        while ( l <= r ) {
            int mid = ( l + r ) >> 1;
            if ( check ( mid ) ) l = mid + 1, ans = mid;
            else r = mid - 1;
        }
        return ans;
    }
    
    int main ( ) {
        freopen ( "watering.in", "r", stdin );
        freopen ( "watering.out", "w", stdout );
        scanf ( "%d%d%I64d", &n, &K, &T );
        for ( int i = 1; i <= n; i ++ )    scanf ( "%I64d", &a[i] ), MI = min ( MI, a[i] ), MA = max ( MA, a[i] );
        LL ans = erfen ( );
        printf ( "%I64d", ans );
        return 0;
    }
  • 相关阅读:
    java private修饰的类和变量
    Volatile和Synchronized对可见性和原子性的支持
    Socket套接字
    Spring MVC请求执行流程
    Spring AOP术语解释
    equals()和==的区别
    约瑟夫环之递归算法
    数据库特性之原子性和一致性
    设计模式之单例模式
    平衡二叉树的插入旋转
  • 原文地址:https://www.cnblogs.com/wans-caesar-02111007/p/9560064.html
Copyright © 2011-2022 走看看