zoukankan      html  css  js  c++  java
  • (差分约束系统) poj 2983

    Is the Information Reliable?
    Time Limit: 3000MS   Memory Limit: 131072K
    Total Submissions: 11676   Accepted: 3687

    Description

    The galaxy war between the Empire Draco and the Commonwealth of Zibu broke out 3 years ago. Draco established a line of defense called Grot. Grot is a straight line with N defense stations. Because of the cooperation of the stations, Zibu’s Marine Glory cannot march any further but stay outside the line.

    A mystery Information Group X benefits form selling information to both sides of the war. Today you the administrator of Zibu’s Intelligence Department got a piece of information about Grot’s defense stations’ arrangement from Information Group X. Your task is to determine whether the information is reliable.

    The information consists of M tips. Each tip is either precise or vague.

    Precise tip is in the form of P A B X, means defense station A is X light-years north of defense station B.

    Vague tip is in the form of V A B, means defense station A is in the north of defense station B, at least 1 light-year, but the precise distance is unknown.

    Input

    There are several test cases in the input. Each test case starts with two integers N (0 < N ≤ 1000) and M (1 ≤ M ≤ 100000).The next M line each describe a tip, either in precise form or vague form.

    Output

    Output one line for each test case in the input. Output “Reliable” if It is possible to arrange N defense stations satisfying all the M tips, otherwise output “Unreliable”.

    Sample Input

    3 4
    P 1 2 1
    P 2 3 1
    V 1 3
    P 1 3 1
    5 5
    V 1 2
    V 2 3
    V 3 4
    V 4 5
    V 3 5

    Sample Output

    Unreliable
    Reliable

    Source

     
    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<cstdlib>
    #include<algorithm>
    #include<queue>
    #define INF 100000000
    using namespace std;
    int n,m,cnt,in[1010],dist[1010];
    bool vis[1010];
    char c;
    struct node
    {
        int to,len,next;
    }e[210000];
    int head[1010];
    void add(int u,int v,int len)
    {
        e[++cnt].to=v;
        e[cnt].len=len;
        e[cnt].next=head[u];
        head[u]=cnt;
    }
    bool spfa(int u)
    {
        memset(in,0,sizeof(in));
        memset(vis,0,sizeof(vis));
        for(int i=0;i<=n;i++)
            dist[i]=INF;
        vis[u]=1;
        dist[u]=0;
        queue<int> q;
        q.push(u);
        in[u]++;
        while(!q.empty())
        {
            int x=q.front();
            q.pop();
            vis[x]=0;
            for(int i=head[x];i;i=e[i].next)
            {
                int v=e[i].to;
                int w=e[i].len;
                if(dist[v]>dist[x]+w)
                {
                    dist[v]=dist[x]+w;
                    if(!vis[v])
                    {
                        q.push(v);
                        vis[v]=1;
                        in[v]++;
                        if(in[v]>n+1)
                            return false;
                    }
                }
            }
        }
        return true;
    }
    int main()
    {
        int a,b,w;
        while(scanf("%d%d",&n,&m)!=EOF)
        {
            cnt=1;
            memset(head,0,sizeof(head));
            for(int i=1;i<=m;i++)
            {
                cin>>c;
                if(c=='P')
                {
                    scanf("%d%d%d",&a,&b,&w);
                    add(b,a,-w);
                    add(a,b,w);
                }
                else if(c=='V')
                {
                    scanf("%d%d",&a,&b);
                    add(b,a,-1);
                }
            }
            for(int i=1;i<=n;i++)
                add(0,i,0);
            if(spfa(0))
                printf("Reliable
    ");
            else
                printf("Unreliable
    ");
        }
        return 0;
    }
    

      

  • 相关阅读:
    用户及文件权限管理
    Linux基础操作及概念
    监督学习和非监督学习
    基于仿生算法的智能系统I
    9.Dijkstra求最短路 II 堆优化的Dijkstra
    8.Dijkstra求最短路 I 朴素Dijkstra
    7.有向图的拓扑序列 拓扑排序
    6.树与图的广度优先遍历 图中点的层次
    5.树的重心 树与图的深度优先遍历
    4.八数码 BFS
  • 原文地址:https://www.cnblogs.com/water-full/p/4531224.html
Copyright © 2011-2022 走看看