zoukankan      html  css  js  c++  java
  • python 结合 Panadas && Numpy在百万条数据中取某一条数据并写入csv文件

    python 结合 Panadas && Numpy在百万条数据中取某一条数据并写入csv文件

    Panadas:是做数据处理。是python的一个数据分析包

    Numpy:数值计算的扩展包,它能高效处理N维数组,复杂函数,线性代数。

    import numpy as np
    import pandas as pd
    import csv
    data_header_list =[
        "x",
        "y",
        "speed"
    ]
    
    def csv_writer(data_list, data_header_list, file_path):
        """Write data to CSV
        """
        if not isinstance(data_list, list):
            raise ValueError("data_list is no list")
        if not isinstance(data_header_list, list):
            raise ValueError("data_header_list is no list")
    
        head = False
        with open(file_path, 'a+') as csv_fi:
            writer = csv.DictWriter(csv_fi, data_header_list)
            reader = csv.reader(csv_fi)
    
            '''判断是否第一次写入'''
            try:
                reader.next()
            except StopIteration:
                head = True
            if head:
                writer.writeheader()
                writer.writerows(data_list)
            else:
                writer.writerows(data_list)
                
    fin = np.loadtxt("/home/read.csv", dtype=np.str, delimiter=',') # 准备读取数据的csv文件
    
    file_path = '/home/write.csv' #准备写入的csv文件
    
    
    data_frame = pd.read_csv("/home/reference.csv") #参考数据的csv文件
    
    
    
    data = fin[1:].tolist()
    
    
    for list1 in data:
        current_log_list = []
        timestamp = int(float(list1[-1]))
        at_id = list1[1]
        try:
           one_data = data_frame.loc[(data_frame['time'] == timestamp) & (data_frame['at_id'] == at_id)]
        	x = float(one_data['x'])
    	y = float(one_data['y'])
    	speed = float(one_data['speed_m_s'])
        except Exception as e:
            x = 0
            y = 0
          	speed = 0
            
        test_dict = {
          "x": x,
          "y": y,
          "speed": speed
          }
        current_log_list.append(test_dict)
        csv_writer(current_log_list, data_header_list, file_path)
        time.sleep(0.001)
        	
    
    
  • 相关阅读:
    react.js 你应知道的9件事
    table的border-collapse属性与border-spacing属性
    深入理解 CSS变形 transform(3d)
    $ 的绑定事件
    保留两位小数
    数据库日期格式化
    javaScript对两个数组进行去重
    js中的原型链__proto__其实超简单!!
    JSON.parse()和JSON.stringify()应用理解
    Java Web 重归
  • 原文地址:https://www.cnblogs.com/lihouqi/p/15263714.html
Copyright © 2011-2022 走看看