zoukankan      html  css  js  c++  java
  • 运动描述

    Body Frame 方向向量采用单位向量,  X_A=[1 0 0]'  ,Y_A=[0 1 0]', Z_A=[0  0  1]'

    旋转矩阵的几点注意: 对角线上多是cos ,cos不分正负, 角度取-theta后,就变成原来的反矩阵,由于旋转矩阵是正交矩阵,所以其反矩阵也是 转置矩阵。

    对A 对 B的旋转矩阵 R , 与 B对A的旋转矩阵互为反矩阵。 明显A对A的旋转矩阵R,就是转角是0的矩阵,代入0后明显发现就是单位矩阵, 所以对角线必需是cos, 只有cos(0)=1

    //===================================================================

    旋转矩阵与转移矩阵的3个用处

    1.描述:Description: 一个Frame B 相对Frame A的 位置(指B org --原点在A坐标系下的向量),与 姿态。

    2.Mapping :一个在Frame B下的位姿(位置与姿态)  变换成 Frame A下的位姿

    3.Operator : 一个在Frame A下的位置,做位姿变换(转动与移动)

    Fix angels  :  对应Operator操作,采用Premultiply    T3T2T1 v  对v来说是先T1再T2再T3, 

    Euler angels : 对应Mapping 操作 ,采用Postmultiply   T1T2T3 v

    prismatic

    revolute

  • 相关阅读:
    二次剩余
    【2020.9.29 NOIP模拟赛 T3】寻梦(fantasy)
    Graph and Queries
    势函数和鞅的停时定理学习笔记
    毒瘤计数题汇总
    2-SAT
    CF559E Gerald and Path
    [SDOI2019]世界地图
    CF1349D Slime and Biscuits
    AT4928 [AGC033E] Go around a Circle
  • 原文地址:https://www.cnblogs.com/wdfrog/p/14783589.html
Copyright © 2011-2022 走看看