zoukankan      html  css  js  c++  java
  • go语言之行--网络编程、http处理流程详情

    一、简介

    go语言中的网络编程主要通过net包实现,net包提供了网络I/O接口,包括HTTP、TCP/IP、UDP、域名解析和Unix域socket等。和大多数语言一样go可以使用几行代码便可以启动一个服务器,但是得益于goroutine的配合go实现的服务器拥有强大并发处理能力。

    二、socket编程

    Socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求。

    socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递。 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器上的具体服务,操作系统有0-65535个端口,每个端口都可以独立对外提供服务,如果 把一个公司比做一台电脑 ,那公司的总机号码就相当于ip地址, 每个员工的分机号就相当于端口, 你想找公司某个人,必须 先打电话到总机,然后再转分机 。

    go中socket编程实现起来非常方便,下面是处理流程

    服务器端:

    1. 监听端口
    2. 接受客户端连接
    3. 创建goroutine处理连接

    客户端:

    1. 建立连接
    2. 收发数据
    3. 关闭连接

    服务端示例:

    package main
    
    import (
        "fmt"
        "net"
    )
    
    func handle(conn net.Conn)  {    //处理连接方法
        defer conn.Close()  //关闭连接
        for{
            buf := make([]byte,100)
            n,err := conn.Read(buf)  //读取客户端数据
            if err!=nil {
                fmt.Println(err)
                return
    
            }
            fmt.Printf("read data size %d msg:%s", n, string(buf[0:n]))
            msg := []byte("hello,world
    ")
            conn.Write(msg)  //发送数据
        }
    }
    func main()  {
        fmt.Println("start server....")
        listen,err := net.Listen("tcp","0.0.0.0:3000") //创建监听
        if err != nil{
            fmt.Println("listen failed! msg :" ,err)
            return
        }
        for{
            conn,errs := listen.Accept()  //接受客户端连接
            if errs != nil{
                fmt.Println("accept failed")
                continue
            }
            go handle(conn) //处理连接
        }
    }

    客户端示例:

    package main
    
    import (
        "bufio"
        "fmt"
        "net"
        "os"
        "strings"
    )
    
    func main() {
        conn, err := net.Dial("tcp", "127.0.0.1:3000")
        if err != nil {
            fmt.Println("err dialing:", err.Error())
            return
        }
        defer conn.Close()
        inputReader := bufio.NewReader(os.Stdin)
        for {
            str, _ := inputReader.ReadString('
    ')
            data := strings.Trim(str, "
    ")
            if data == "quit" {   //输入quit退出
                return
            }
            _, err := conn.Write([]byte(data)) //发送数据
            if err != nil {
                fmt.Println("send data error:", err)
                return
            }
            buf := make([]byte,512)
            n,err := conn.Read(buf)  //读取服务端端数据
            fmt.Println("from server:", string(buf[:n]))
        }
    }

    conn示例还提供其他方法:

    type Conn interface {
        // Read reads data from the connection.
        // Read can be made to time out and return an Error with Timeout() == true
        // after a fixed time limit; see SetDeadline and SetReadDeadline.
        Read(b []byte) (n int, err error)  //读取连接中数据
        
        // Write writes data to the connection.
        // Write can be made to time out and return an Error with Timeout() == true
        // after a fixed time limit; see SetDeadline and SetWriteDeadline.
        Write(b []byte) (n int, err error) //发送数据
    
        // Close closes the connection.
        // Any blocked Read or Write operations will be unblocked and return errors.
        Close() error   //关闭链接
    
        // LocalAddr returns the local network address.
        LocalAddr() Addr //返回本地连接地址
    
        // RemoteAddr returns the remote network address.
        RemoteAddr() Addr //返回远程连接的地址
    
        // SetDeadline sets the read and write deadlines associated
        // with the connection. It is equivalent to calling both
        // SetReadDeadline and SetWriteDeadline.
        //
        // A deadline is an absolute time after which I/O operations
        // fail with a timeout (see type Error) instead of
        // blocking. The deadline applies to all future and pending
        // I/O, not just the immediately following call to Read or
        // Write. After a deadline has been exceeded, the connection
        // can be refreshed by setting a deadline in the future.
        //
        // An idle timeout can be implemented by repeatedly extending
        // the deadline after successful Read or Write calls.
        //
        // A zero value for t means I/O operations will not time out.
        SetDeadline(t time.Time) error //设置链接读取或者写超时时间
    
        // SetReadDeadline sets the deadline for future Read calls
        // and any currently-blocked Read call.
        // A zero value for t means Read will not time out.
        SetReadDeadline(t time.Time) error //单独设置读取超时时间
    
        // SetWriteDeadline sets the deadline for future Write calls
        // and any currently-blocked Write call.
        // Even if write times out, it may return n > 0, indicating that
        // some of the data was successfully written.
        // A zero value for t means Write will not time out.
        SetWriteDeadline(t time.Time) error//单独设置写超时时间
    }

    三、go中HTTP服务处理流程

    简介

    网络发展,很多网络应用都是构建再 HTTP 服务基础之上。HTTP 协议从诞生到现在,发展从1.0,1.1到2.0也不断再进步。除去细节,理解 HTTP 构建的网络应用只要关注两个端---客户端(clinet)和服务端(server),两个端的交互来自 clinet 的 request,以及server端的response。所谓的http服务器,主要在于如何接受 clinet 的 request,并向client返回response。接收request的过程中,最重要的莫过于路由(router),即实现一个Multiplexer器。Go中既可以使用内置的mutilplexer --- DefautServeMux,也可以自定义。Multiplexer路由的目的就是为了找到处理器函数(handler),后者将对request进行处理,同时构建response。

    最后简化的请求处理流程为:

    Clinet -> Requests ->  [Multiplexer(router) -> handler  -> Response -> Clinet

    因此,理解go中的http服务,最重要就是要理解Multiplexer和handler,Golang中的Multiplexer基于ServeMux结构,同时也实现了Handler接口。

    对象说明:

    • hander函数: 具有func(w http.ResponseWriter, r *http.Requests)签名的函数
    • handler函数: 经过HandlerFunc结构包装的handler函数,它实现了ServeHTTP接口方法的函数。调用handler处理器的ServeHTTP方法时,即调用handler函数本身。
    • handler对象:实现了Handler接口ServeHTTP方法的结构。

    handler处理器和handler对象的差别在于,一个是函数,另外一个是结构,它们都有实现了ServeHTTP方法。很多情况下它们的功能类似,下文就使用统称为handler。

    Handler

    Golang没有继承,类多态的方式可以通过接口实现。所谓接口则是定义声明了函数签名,任何结构只要实现了与接口函数签名相同的方法,就等同于实现了接口。go的http服务都是基于handler进行处理。

    type Handler interface {
        ServeHTTP(ResponseWriter, *Request)
    }

    任何结构体,只要实现了ServeHTTP方法,这个结构就可以称之为handler对象。ServeMux会使用handler并调用其ServeHTTP方法处理请求并返回响应。

    ServeMux

    源码部分:

    type ServeMux struct {
        mu    sync.RWMutex
        m     map[string]muxEntry
        hosts bool 
    }
    
    type muxEntry struct {
        explicit bool
        h        Handler
        pattern  string
    }

    ServeMux结构中最重要的字段为m,这是一个map,key是一些url模式,value是一个muxEntry结构,后者里定义存储了具体的url模式和handler。当然,所谓的ServeMux也实现了ServeHTTP接口,也算是一个handler,不过ServeMux的ServeHTTP方法不是用来处理request和respone,而是用来找到路由注册的handler,后面再做解释。

    Server

    除了ServeMux和Handler,还有一个结构Server需要了解。从http.ListenAndServe的源码可以看出,它创建了一个server对象,并调用server对象的ListenAndServe方法:

    func ListenAndServe(addr string, handler Handler) error {
        server := &Server{Addr: addr, Handler: handler}
        return server.ListenAndServe()
    }

    查看server的结构如下:

    type Server struct {
        Addr         string        
        Handler      Handler       
        ReadTimeout  time.Duration 
        WriteTimeout time.Duration 
        TLSConfig    *tls.Config   
    
        MaxHeaderBytes int
    
        TLSNextProto map[string]func(*Server, *tls.Conn, Handler)
    
        ConnState func(net.Conn, ConnState)
        ErrorLog *log.Logger
        disableKeepAlives int32     nextProtoOnce     sync.Once 
        nextProtoErr      error     
    }

    server结构存储了服务器处理请求常见的字段。其中Handler字段也保留Handler接口。如果Server接口没有提供Handler结构对象,那么会使用DefautServeMux做multiplexer,后面再做分析。

    创建HTTP服务

    创建一个http服务,大致需要经历两个过程,首先需要注册路由,即提供url模式和handler函数的映射,其次就是实例化一个server对象,并开启对客户端的监听。

    http.HandleFunc("/", indexHandler)
    http.ListenAndServe("127.0.0.1:8000", nil)
    或
    server := &Server{Addr: addr, Handler: handler}
    
    server.ListenAndServe()

    示例:

    package main
    import (
    "fmt"
    "net/http"
    )
    
    func Hello(w http.ResponseWriter, r *http.Request) {
    fmt.Println("Hello World.")
    fmt.Fprintf(w, "Hello World.
    ")
    }
    
    func main() {
    http.HandleFunc("/", Hello)
    err := http.ListenAndServe("0.0.0.0:6000", nil)
    if err != nil {
    fmt.Println("http listen failed.")
    }
    }
    
    //curl http://127.0.0.1:6000  
    // 结果:Hello World

    路由注册

    net/http包暴露的注册路由的api很简单,http.HandleFunc选取了DefaultServeMux作为multiplexer:

    func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
        DefaultServeMux.HandleFunc(pattern, handler)
    }

    DefaultServeMux是ServeMux的一个实例。当然http包也提供了NewServeMux方法创建一个ServeMux实例,默认则创建一个DefaultServeMux:

    // NewServeMux allocates and returns a new ServeMux.
    func NewServeMux() *ServeMux { return new(ServeMux) }
    
    // DefaultServeMux is the default ServeMux used by Serve.
    var DefaultServeMux = &defaultServeMux
    
    var defaultServeMux ServeMux

    DefaultServeMux的HandleFunc(pattern, handler)方法实际是定义在ServeMux下的:

    // HandleFunc registers the handler function for the given pattern.
    func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) {
        mux.Handle(pattern, HandlerFunc(handler))
    }

    HandlerFunc是一个函数类型。同时实现了Handler接口的ServeHTTP方法。使用HandlerFunc类型包装一下路由定义的indexHandler函数,其目的就是为了让这个函数也实现ServeHTTP方法,即转变成一个handler处理器(函数)。

    type HandlerFunc func(ResponseWriter, *Request)
    
    // ServeHTTP calls f(w, r).
    func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) {
        f(w, r)
    }

    我们最开始写的例子中
    http.HandleFunc("/",Indexhandler)
    这样 IndexHandler 函数也有了ServeHTTP方法。ServeMux的Handle方法,将会对pattern和handler函数做一个map映射:

    func ListenAndServe(addr string, handler Handler) error {
        server := &Server{Addr: addr, Handler: handler}
        return server.ListenAndServe()
    }
    // ListenAndServe listens on the TCP network address srv.Addr and then
    // calls Serve to handle requests on incoming connections.
    // Accepted connections are configured to enable TCP keep-alives.
    // If srv.Addr is blank, ":http" is used.
    // ListenAndServe always returns a non-nil error.
    func (srv *Server) ListenAndServe() error {
        addr := srv.Addr
        if addr == "" {
            addr = ":http"
        }
        ln, err := net.Listen("tcp", addr)
        if err != nil {
            return err
        }
        return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)})
    }

    Server的ListenAndServe方法中,会初始化监听地址Addr,同时调用Listen方法设置监听。最后将监听的TCP对象传入Serve方法:

    // Serve accepts incoming connections on the Listener l, creating a
    // new service goroutine for each. The service goroutines read requests and
    // then call srv.Handler to reply to them.
    //
    // For HTTP/2 support, srv.TLSConfig should be initialized to the
    // provided listener's TLS Config before calling Serve. If
    // srv.TLSConfig is non-nil and doesn't include the string "h2" in
    // Config.NextProtos, HTTP/2 support is not enabled.
    //
    // Serve always returns a non-nil error. After Shutdown or Close, the
    // returned error is ErrServerClosed.
    func (srv *Server) Serve(l net.Listener) error {
        defer l.Close()
        if fn := testHookServerServe; fn != nil {
            fn(srv, l)
        }
        var tempDelay time.Duration // how long to sleep on accept failure
    
        if err := srv.setupHTTP2_Serve(); err != nil {
            return err
        }
    
        srv.trackListener(l, true)
        defer srv.trackListener(l, false)
    
        baseCtx := context.Background() // base is always background, per Issue 16220
        ctx := context.WithValue(baseCtx, ServerContextKey, srv)
        for {
            rw, e := l.Accept()
            if e != nil {
                select {
                case <-srv.getDoneChan():
                    return ErrServerClosed
                default:
                }
                if ne, ok := e.(net.Error); ok && ne.Temporary() {
                    if tempDelay == 0 {
                        tempDelay = 5 * time.Millisecond
                    } else {
                        tempDelay *= 2
                    }
                    if max := 1 * time.Second; tempDelay > max {
                        tempDelay = max
                    }
                    srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay)
                    time.Sleep(tempDelay)
                    continue
                }
                return e
            }
            tempDelay = 0
            c := srv.newConn(rw)
            c.setState(c.rwc, StateNew) // before Serve can return
            go c.serve(ctx)
        }
    }

    监听开启之后,一旦客户端请求到底,go就开启一个协程处理请求,主要逻辑都在serve方法之中。

    serve方法比较长,其主要职能就是,创建一个上下文对象,然后调用Listener的Accept方法用来 获取连接数据并使用newConn方法创建连接对象。最后使用goroutine协程的方式处理连接请求。因为每一个连接都开起了一个协程,请求的上下文都不同,同时又保证了go的高并发。serve也是一个长长的方法:

    // Serve a new connection.
    func (c *conn) serve(ctx context.Context) {
        c.remoteAddr = c.rwc.RemoteAddr().String()
        ctx = context.WithValue(ctx, LocalAddrContextKey, c.rwc.LocalAddr())
        defer func() {
            if err := recover(); err != nil && err != ErrAbortHandler {
                const size = 64 << 10
                buf := make([]byte, size)
                buf = buf[:runtime.Stack(buf, false)]
                c.server.logf("http: panic serving %v: %v
    %s", c.remoteAddr, err, buf)
            }
            if !c.hijacked() {
                c.close()
                c.setState(c.rwc, StateClosed)
            }
        }()
    
        if tlsConn, ok := c.rwc.(*tls.Conn); ok {
            if d := c.server.ReadTimeout; d != 0 {
                c.rwc.SetReadDeadline(time.Now().Add(d))
            }
            if d := c.server.WriteTimeout; d != 0 {
                c.rwc.SetWriteDeadline(time.Now().Add(d))
            }
            if err := tlsConn.Handshake(); err != nil {
                c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err)
                return
            }
            c.tlsState = new(tls.ConnectionState)
            *c.tlsState = tlsConn.ConnectionState()
            if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) {
                if fn := c.server.TLSNextProto[proto]; fn != nil {
                    h := initNPNRequest{tlsConn, serverHandler{c.server}}
                    fn(c.server, tlsConn, h)
                }
                return
            }
        }
    
        // HTTP/1.x from here on.
    
        ctx, cancelCtx := context.WithCancel(ctx)
        c.cancelCtx = cancelCtx
        defer cancelCtx()
    
        c.r = &connReader{conn: c}
        c.bufr = newBufioReader(c.r)
        c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10)
    
        for {
            w, err := c.readRequest(ctx)
            if c.r.remain != c.server.initialReadLimitSize() {
                // If we read any bytes off the wire, we're active.
                c.setState(c.rwc, StateActive)
            }
            if err != nil {
                const errorHeaders = "
    Content-Type: text/plain; charset=utf-8
    Connection: close
    
    "
    
                if err == errTooLarge {
                    // Their HTTP client may or may not be
                    // able to read this if we're
                    // responding to them and hanging up
                    // while they're still writing their
                    // request. Undefined behavior.
                    const publicErr = "431 Request Header Fields Too Large"
                    fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
                    c.closeWriteAndWait()
                    return
                }
                if isCommonNetReadError(err) {
                    return // don't reply
                }
    
                publicErr := "400 Bad Request"
                if v, ok := err.(badRequestError); ok {
                    publicErr = publicErr + ": " + string(v)
                }
    
                fmt.Fprintf(c.rwc, "HTTP/1.1 "+publicErr+errorHeaders+publicErr)
                return
            }
    
            // Expect 100 Continue support
            req := w.req
            if req.expectsContinue() {
                if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 {
                    // Wrap the Body reader with one that replies on the connection
                    req.Body = &expectContinueReader{readCloser: req.Body, resp: w}
                }
            } else if req.Header.get("Expect") != "" {
                w.sendExpectationFailed()
                return
            }
    
            c.curReq.Store(w)
    
            if requestBodyRemains(req.Body) {
                registerOnHitEOF(req.Body, w.conn.r.startBackgroundRead)
            } else {
                if w.conn.bufr.Buffered() > 0 {
                    w.conn.r.closeNotifyFromPipelinedRequest()
                }
                w.conn.r.startBackgroundRead()
            }
    
            // HTTP cannot have multiple simultaneous active requests.[*]
            // Until the server replies to this request, it can't read another,
            // so we might as well run the handler in this goroutine.
            // [*] Not strictly true: HTTP pipelining. We could let them all process
            // in parallel even if their responses need to be serialized.
            // But we're not going to implement HTTP pipelining because it
            // was never deployed in the wild and the answer is HTTP/2.
            serverHandler{c.server}.ServeHTTP(w, w.req)
            w.cancelCtx()
            if c.hijacked() {
                return
            }
            w.finishRequest()
            if !w.shouldReuseConnection() {
                if w.requestBodyLimitHit || w.closedRequestBodyEarly() {
                    c.closeWriteAndWait()
                }
                return
            }
            c.setState(c.rwc, StateIdle)
            c.curReq.Store((*response)(nil))
    
            if !w.conn.server.doKeepAlives() {
                // We're in shutdown mode. We might've replied
                // to the user without "Connection: close" and
                // they might think they can send another
                // request, but such is life with HTTP/1.1.
                return
            }
    
            if d := c.server.idleTimeout(); d != 0 {
                c.rwc.SetReadDeadline(time.Now().Add(d))
                if _, err := c.bufr.Peek(4); err != nil {
                    return
                }
            }
            c.rwc.SetReadDeadline(time.Time{})
        }
    }
    serve方法

    使用defer定义了函数退出时,连接关闭相关的处理。然后就是读取连接的网络数据,并处理读取完毕时候的状态。接下来就是调用serverHandler{c.server}.ServeHTTP(w, w.req)方法处理请求了。最后就是请求处理完毕的逻辑。serverHandler是一个重要的结构,它近有一个字段,即Server结构,同时它也实现了Handler接口方法ServeHTTP,并在该接口方法中做了一个重要的事情,初始化multiplexer路由多路复用器。如果server对象没有指定Handler,则使用默认的DefaultServeMux作为路由Multiplexer。并调用初始化Handler的ServeHTTP方法。

    // serverHandler delegates to either the server's Handler or
    // DefaultServeMux and also handles "OPTIONS *" requests.
    type serverHandler struct {
        srv *Server
    }
    
    func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) {
        handler := sh.srv.Handler
        if handler == nil {
            handler = DefaultServeMux
        }
        if req.RequestURI == "*" && req.Method == "OPTIONS" {
            handler = globalOptionsHandler{}
        }
        handler.ServeHTTP(rw, req)
    }

    这里DefaultServeMux的ServeHTTP方法其实也是定义在ServeMux结构中的,相关代码如下:

    // Find a handler on a handler map given a path string.
    // Most-specific (longest) pattern wins.
    func (mux *ServeMux) match(path string) (h Handler, pattern string) {
        // Check for exact match first.
        v, ok := mux.m[path]
        if ok {
            return v.h, v.pattern
        }
    
        // Check for longest valid match.
        var n = 0
        for k, v := range mux.m {
            if !pathMatch(k, path) {
                continue
            }
            if h == nil || len(k) > n {
                n = len(k)
                h = v.h
                pattern = v.pattern
            }
        }
        return
    }
    func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) {
    
        // CONNECT requests are not canonicalized.
        if r.Method == "CONNECT" {
            return mux.handler(r.Host, r.URL.Path)
        }
    
        // All other requests have any port stripped and path cleaned
        // before passing to mux.handler.
        host := stripHostPort(r.Host)
        path := cleanPath(r.URL.Path)
        if path != r.URL.Path {
            _, pattern = mux.handler(host, path)
            url := *r.URL
            url.Path = path
            return RedirectHandler(url.String(), StatusMovedPermanently), pattern
        }
    
        return mux.handler(host, r.URL.Path)
    }
    
    // handler is the main implementation of Handler.
    // The path is known to be in canonical form, except for CONNECT methods.
    func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) {
        mux.mu.RLock()
        defer mux.mu.RUnlock()
    
        // Host-specific pattern takes precedence over generic ones
        if mux.hosts {
            h, pattern = mux.match(host + path)
        }
        if h == nil {
            h, pattern = mux.match(path)
        }
        if h == nil {
            h, pattern = NotFoundHandler(), ""
        }
        return
    }
    
    // ServeHTTP dispatches the request to the handler whose
    // pattern most closely matches the request URL.
    func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) {
        if r.RequestURI == "*" {
            if r.ProtoAtLeast(1, 1) {
                w.Header().Set("Connection", "close")
            }
            w.WriteHeader(StatusBadRequest)
            return
        }
        h, _ := mux.Handler(r)
        h.ServeHTTP(w, r)
    }

    mux的ServeHTTP方法通过调用其Handler方法寻找注册到路由上的handler函数,并调用该函数的ServeHTTP方法,本例则是IndexHandler函数。 mux的Handler方法对URL简单的处理,然后调用handler方法,后者会创建一个锁,同时调用match方法返回一个handler和pattern。 在match方法中,mux的m字段是map[string]muxEntry图,后者存储了pattern和handler处理器函数,因此通过迭代m寻找出注册路由的patten模式与实际url匹配的handler函数并返回。 返回的结构一直传递到mux的ServeHTTP方法,接下来调用handler函数的ServeHTTP方法,即IndexHandler函数,然后把response写到http.RequestWirter对象返回给客户端。 上述函数运行结束即`serverHandler{c.server}.ServeHTTP(w, w.req)`运行结束。接下来就是对请求处理完毕之后上希望和连接断开的相关逻辑。 至此,Golang中一个完整的http服务介绍完毕,包括注册路由,开启监听,处理连接,路由处理函数。

    总结

    多数的web应用基于HTTP协议,客户端和服务器通过request-response的方式交互。一个server并不可少的两部分莫过于路由注册和连接处理。Golang通过一个ServeMux实现了的multiplexer路由多路复用器来管理路由。同时提供一个Handler接口提供ServeHTTP用来实现handler处理其函数,后者可以处理实际request并构造response。 ServeMux和handler处理器函数的连接桥梁就是Handler接口。ServeMux的ServeHTTP方法实现了寻找注册路由的handler的函数,并调用该handler的ServeHTTP方法。ServeHTTP方法就是真正处理请求和构造响应的地方。 回顾go的http包实现http服务的流程,可见大师们的编码设计之功力。学习有利提高自身的代码逻辑组织能力。更好的学习方式除了阅读,就是实践,接下来,我们将着重讨论来构建http服务。尤其是构建http中间件函数。

    四、HTTP客户端工具

    net/http不仅提供了服务端处理,还提供了客户端处理功能。

    http包中提供了Get、Post、Head、PostForm方法实现HTTP请求:

    //GET
    func Get(url string) (resp *Response, err error) {
        return DefaultClient.Get(url)
    }
    
    //POST
    func Post(url string, contentType string, body io.Reader) (resp *Response, err error) {
        return DefaultClient.Post(url, contentType, body)
    }
    
    //HEAD
    func Head(url string) (resp *Response, err error) {
        return DefaultClient.Head(url)
    }
    
    //POSTFORM
    
    func PostForm(url string, data url.Values) (resp *Response, err error) {
        return DefaultClient.PostForm(url, data)
    }

    GET请求示例

    package main
    
    import (
        "fmt"
        "net/http"
        "log"
        "reflect"
        "bytes"
    )
    
    func main() {
    
        resp, err := http.Get("http://www.baidu.com")
        if err != nil {
            // 错误处理
            log.Println(err)
            return
        }
    
        defer resp.Body.Close() //关闭链接
    
        headers := resp.Header
    
        for k, v := range headers {
            fmt.Printf("k=%v, v=%v
    ", k, v) //所有头信息
        }
    
        fmt.Printf("resp status %s,statusCode %d
    ", resp.Status, resp.StatusCode)
    
        fmt.Printf("resp Proto %s
    ", resp.Proto)
    
        fmt.Printf("resp content length %d
    ", resp.ContentLength)
    
        fmt.Printf("resp transfer encoding %v
    ", resp.TransferEncoding)
    
        fmt.Printf("resp Uncompressed %t
    ", resp.Uncompressed)
    
        fmt.Println(reflect.TypeOf(resp.Body)) 
        buf := bytes.NewBuffer(make([]byte, 0, 512))
        length, _ := buf.ReadFrom(resp.Body)
        fmt.Println(len(buf.Bytes()))
        fmt.Println(length)
        fmt.Println(string(buf.Bytes()))
    }

    使用http.Do设置请求头、cookie等

    package main
    
    import (
        "net/http"
        "strings"
        "io/ioutil"
        "log"
        "fmt"
    )
    
    func main() {
        client := &http.Client{}
        req, err := http.NewRequest("POST", "http://www.baidu.com",
            strings.NewReader("name=xxxx&passwd=xxxx"))
        if err != nil {
            fmt.Println(err)
            return
        }
    
        req.Header.Set("Content-Type", "application/x-www-form-urlencoded; charset=UTF-8") //设置请求头信息
    
        resp, err := client.Do(req)
    
        defer resp.Body.Close()
    
        body, err := ioutil.ReadAll(resp.Body)
        if err != nil {
            log.Println(err)
            return
        }
        var res string
        res = string(body[:])
        fmt.Println(res)
    }

    POST请求示例

    package main
    
    import (
        "net/http"
        "strings"
        "fmt"
        "io/ioutil"
    )
    
    func main() {
        resp, err := http.Post("http://www.baidu.com",
            "application/x-www-form-urlencoded",
            strings.NewReader("username=xxx&password=xxxx"))
        if err != nil {
            fmt.Println(err)
            return
        }
    
        defer resp.Body.Close()
        body, err := ioutil.ReadAll(resp.Body)
        if err != nil {
            fmt.Println(err)
            return
        }
    
        fmt.Println(string(body))
    }

    PostForm请求示例

    package main
    
    import (
        "net/http"
        "fmt"
        "io/ioutil"
        "net/url"
    )
    
    func main() {
    
        postParam := url.Values{
            "name":      {"wd"},
            "password": {"1234"},
        }
    
        resp, err := http.PostForm("https://cn.bing.com/", postParam)
        if err != nil {
            fmt.Println(err)
            return
        }
    
        defer resp.Body.Close()
        body, err := ioutil.ReadAll(resp.Body)
        if err != nil {
            fmt.Println(err)
            return
        }
    
        fmt.Println(string(body))
    }

     

     
  • 相关阅读:
    【青橙商城-管理后台开发】2. 商品服务模块搭建
    【青橙商城-管理后台开发】1.公共模块搭建
    Oracle对象-视图和索引
    Oracle的查询-分页查询
    Oracle的查询-子查询
    Oracle的查询-自连接概念和联系
    Oracle的查询-多表查询中的一些概念
    Oracle的查询-分组查询
    Oracle的查询-多行查询
    dotnet 开源库
  • 原文地址:https://www.cnblogs.com/wdliu/p/9284459.html
Copyright © 2011-2022 走看看