zoukankan      html  css  js  c++  java
  • 自然语言3——官网介绍

     

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)

    https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

    Natural Language Toolkit

    NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active discussion forum.

    Thanks to a hands-on guide introducing programming fundamentals alongside topics in computational linguistics, plus comprehensive API documentation, NLTK is suitable for linguists, engineers, students, educators, researchers, and industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, NLTK is a free, open source, community-driven project.

    NLTK has been called “a wonderful tool for teaching, and working in, computational linguistics using Python,” and “an amazing library to play with natural language.”

    Natural Language Processing with Python provides a practical introduction to programming for language processing. Written by the creators of NLTK, it guides the reader through the fundamentals of writing Python programs, working with corpora, categorizing text, analyzing linguistic structure, and more. The book is being updated for Python 3 and NLTK 3. (The original Python 2 version is still available at http://nltk.org/book_1ed.)

    Some simple things you can do with NLTK

    Tokenize and tag some text:

    >>> import nltk
    >>> sentence = """At eight o'clock on Thursday morning
    ... Arthur didn't feel very good."""
    >>> tokens = nltk.word_tokenize(sentence)
    >>> tokens
    ['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
    'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
    >>> tagged = nltk.pos_tag(tokens)
    >>> tagged[0:6]
    [('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
    ('Thursday', 'NNP'), ('morning', 'NN')]
    

    Identify named entities:

    >>> entities = nltk.chunk.ne_chunk(tagged)
    >>> entities
    Tree('S', [('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'),
               ('on', 'IN'), ('Thursday', 'NNP'), ('morning', 'NN'),
           Tree('PERSON', [('Arthur', 'NNP')]),
               ('did', 'VBD'), ("n't", 'RB'), ('feel', 'VB'),
               ('very', 'RB'), ('good', 'JJ'), ('.', '.')])
    

    Display a parse tree:

    >>> from nltk.corpus import treebank
    >>> t = treebank.parsed_sents('wsj_0001.mrg')[0]
    >>> t.draw()
    
    _images/tree.gif

    NB. If you publish work that uses NLTK, please cite the NLTK book as follows:

    Bird, Steven, Edward Loper and Ewan Klein (2009), Natural Language Processing with Python. O’Reilly Media Inc.                                                                                                                          
  • 相关阅读:
    WPF 常用path示例
    Grid之 Gridlength 解析
    Binding Relative 示例
    Grid之 好玩的GridSplitter
    Blend 制作水晶按钮
    DockPanel—最守规矩布局控件
    万恶之源python介绍
    04.基本数据类型(list,tuple)
    02.万恶之源python 运算符和编码
    基本数据类型(int, bool, str)
  • 原文地址:https://www.cnblogs.com/webRobot/p/6066335.html
Copyright © 2011-2022 走看看