zoukankan      html  css  js  c++  java
  • nltk31_twitter情感分析

    已经生成4个pickle文件,分别为documents,word_features,originalnaivebayes5k,featurests

    其中featurests容量最大,3百多兆,如果扩大5000特征集,容量继续扩大,准确性也提供

    https://www.pythonprogramming.net/sentiment-analysis-module-nltk-tutorial/

    Creating a module for Sentiment Analysis with NLTK

    # -*- coding: utf-8 -*-
    """
    Created on Sat Jan 14 09:59:09 2017
    
    @author: daxiong
    """
    
    #File: sentiment_mod.py
    
    import nltk
    import random
    import pickle
    from nltk.tokenize import word_tokenize
    
    documents_f = open("documents.pickle", "rb")
    documents = pickle.load(documents_f)
    documents_f.close()
    
    
    
    
    word_features5k_f = open("word_features5k.pickle", "rb")
    word_features = pickle.load(word_features5k_f)
    word_features5k_f.close()
    
    
    def find_features(document):
        words = word_tokenize(document)
        features = {}
        for w in word_features:
            features[w] = (w in words)
    
        return features
    
    
    
    featuresets_f = open("featuresets.pickle", "rb")
    featuresets = pickle.load(featuresets_f)
    featuresets_f.close()
    
    random.shuffle(featuresets)
    print(len(featuresets))
    
    testing_set = featuresets[10000:]
    training_set = featuresets[:10000]
    
    
    
    open_file = open("originalnaivebayes5k.pickle", "rb")
    classifier = pickle.load(open_file)
    open_file.close()
    
    
    def sentiment(text):
        feats = find_features(text)
        return classifier.classify(feats)


    def sentiment_test(text):
        feats = find_features(text)
        value=classifier.classify(feats)
        if value=="pos":
            print("正面评价")
        else:
            print("负面评价")
            
            
    def sentiment_inputTest():
        text=input("主人请输入留言:")
        feats = find_features(text)
        value=classifier.classify(feats)
        if value=="pos":
            print("正面评价")
        else:
            print("负面评价") print(sentiment("This movie was awesome! The acting was great, plot was wonderful, and there were pythons...so yea!")) print(sentiment("This movie was utter junk. There were absolutely 0 pythons. I don't see what the point was at all. Horrible movie, 0/10"))

    测试效果

    还是比较准,the movie is good 测试不准,看来要改进算法,考虑用频率分析和过滤垃圾词来提高准确率

  • 相关阅读:
    re模块
    collections模块
    hashlib模块
    序列号模块
    random模块
    sys模块
    OS模块
    工厂模式
    Go语言之直接选择排序
    Go语言之直接插入排序
  • 原文地址:https://www.cnblogs.com/webRobot/p/6284752.html
Copyright © 2011-2022 走看看