zoukankan      html  css  js  c++  java
  • 多元回归比一元回归优越性

     

     

     

    貌似一个不相关的变量,可能对结果有显著影响

    多元回归可以分析独立变量与因变量是否显著相关。但解释能力不如因子分析

    因子分析对变量相关性解释能力更强

     

    正态分布检验OK

    三组数据呈现正态分布,可以用回归检测

    # -*- coding: utf-8 -*-
    '''
    Author:Toby
    QQ:231469242,all right reversed,no commercial use
    normality_check.py
    正态性检验脚本
      
    '''
      
    import scipy
    from scipy.stats import f
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.stats as stats
    # additional packages
    from statsmodels.stats.diagnostic import lillifors
      
    #对一列数据进行正态分布测试
    def check_normality(testData):
        print("one group normality check begin:")
        #20<样本数<50用normal test算法检验正态分布性
        if 20<len(testData) <50:
           p_value= stats.normaltest(testData)[1]
           if p_value<0.05:
               print("use normaltest")
               print("p value:",p_value)
               print ("data are not normal distributed")
               return  False
           else:
               print("use normaltest")
               print("p value:",p_value)
               print ("data are normal distributed")
               return True
          
        #样本数小于50用Shapiro-Wilk算法检验正态分布性
        if len(testData) <50:
           p_value= stats.shapiro(testData)[1]
           if p_value<0.05:
               print ("use shapiro:")
               print("p value:",p_value)
               print ("data are not normal distributed")
               return  False
           else:
               print ("use shapiro:")
               print("p value:",p_value)
               print ("data are normal distributed")
               return True
            
        if 300>=len(testData) >=50:
           p_value= lillifors(testData)[1]
           
           if p_value<0.05:
               print ("use lillifors:")
               print("p value:",p_value)
               print ("data are not normal distributed")
               return  False
           else:
               print ("use lillifors:")
               print("p value:",p_value)
               print ("data are normal distributed")
               return True
          
        if len(testData) >300:
           p_value= stats.kstest(testData,'norm')[1]
           if p_value<0.05:
               print ("use kstest:")
               print("p value:",p_value)
               print ("data are not normal distributed")
               return  False
           else:
               print ("use kstest:")
               print("p value:",p_value)
               print ("data are normal distributed")
               return True
        #测试结束
        print("-"*100)
      
    #对所有样本组进行正态性检验
    def NormalTest(list_groups):
        for group in list_groups:
            #正态性检验
            status=check_normality(group)
            if status==False :
                return False
                  
     
    
    group1=[5,2,4,2.5,3,3.5,2.5,3]
    group2=[1.5,2,1.5,2.5,3.3,2.3,4.2,2.5]
    group3=[96,90,95,92,95,94,94,94]
    list_groups=[group1,group2,group3]
    list_total=group1+group2+group3
    #对所有样本组进行正态性检验  
    NormalTest(list_groups)
    

      

    下图可见,独立变量x1和x2没有相关,R调整平方为0.19

    x1和yR调整平方0.59的关系--存在很弱关系

    x2和y存在R调整平方-0.19,即没有关系

    但x1和x2与y存在0.886R调整平方关系,非常强

    且x1和x2与y结合后,残差服从正态分布,AIC和BIC值很小,

    prob (F-statistic)=0.00187,小于0.05,说明回归方程显著

    参数t检验显著,x1和x2的t分数P值分别为0.001和0.01,小于0.05,否定H0,表示x1和x2显著,说明此模型拟合度很好

    说明貌似一个不相关的变量,可能对结果有显著影响

    # -*- coding: utf-8 -*-
    """
    Created on Tue Jul 18 09:37:15 2017
    
    @author: toby
    """
    
    
    
    # Import standard packages
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import seaborn as sns
    from sklearn import datasets, linear_model
    from matplotlib.font_manager import FontProperties 
    font_set = FontProperties(fname=r"c:windowsfontssimsun.ttc", size=15)  
    # additional packages
    import sys
    import os
    sys.path.append(os.path.join('..', '..', 'Utilities'))
    
    try:
    # Import formatting commands if directory "Utilities" is available
        from ISP_mystyle import showData 
        
    except ImportError:
    # Ensure correct performance otherwise
        def showData(*options):
            plt.show()
            return
    
    # additional packages ...
    # ... for the 3d plot ...
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    
    # ... and for the statistic
    from statsmodels.formula.api import ols
    #生成组合
    from itertools import combinations
    
    x1=[5,2,4,2.5,3,3.5,2.5,3]
    x2=[1.5,2,1.5,2.5,3.3,2.3,4.2,2.5]
    y=[96,90,95,92,95,94,94,94]
    
    
    #自变量列表
    list_x=[x1,x2]
    
    #绘制多元回归三维图
    def Draw_multilinear():
        
        df = pd.DataFrame({'x1':x1,'x2':x2,'y':y})
        # --- >>> START stats <<< ---
        # Fit the model
        model = ols("y~x1+x2", df).fit()
        param_intercept=model.params[0]
        param_x1=model.params[1]
        param_x2=model.params[2]
        rSquared_adj=model.rsquared_adj
        
        #generate data,产生矩阵然后把数值附上去
        x = np.linspace(-5,5,101)
        (X,Y) = np.meshgrid(x,x)
        
        # To get reproducable values, I provide a seed value
        np.random.seed(987654321)   
        Z = param_intercept + param_x1*X+param_x2*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1])
    
        # 绘图
        #Set the color
        myCmap = cm.GnBu_r
        # If you want a colormap from seaborn use:
        #from matplotlib.colors import ListedColormap
        #myCmap = ListedColormap(sns.color_palette("Blues", 20))
        
        # Plot the figure
        fig = plt.figure("multi")
        ax = fig.gca(projection='3d')
        surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2, 
            linewidth=0, antialiased=False)
        ax.view_init(20,-120)
        ax.set_xlabel('X')
        ax.set_ylabel('Y')
        ax.set_zlabel('Z')
        ax.set_title("multilinear with adj_Rsquare %f"%(rSquared_adj))
        fig.colorbar(surf, shrink=0.6)
        
        outFile = '3dSurface.png'
        showData(outFile)
    
        
    #检查独立变量之间共线性关系
    def Two_dependentVariables_compare(x1,x2):
        # Convert the data into a Pandas DataFrame
        df = pd.DataFrame({'x':x1, 'y':x2})
        # Fit the model
        model = ols("y~x", df).fit()
        rSquared_adj=model.rsquared_adj
        print("rSquared_adj",rSquared_adj)
        if rSquared_adj>=0.8:
            print("high relation")
            return True
        elif 0.6<=rSquared_adj<0.8:
             print("middle relation")
             return False
        elif rSquared_adj<0.6:
             print("low relation")
             return False
    
    #比较所有参数,观察是否存在多重共线
    def All_dependentVariables_compare(list_x):  
        list_status=[]
        list_combine=list(combinations(list_x, 2))
        for i in list_combine:
            x1=i[0]
            x2=i[1]
            status=Two_dependentVariables_compare(x1,x2)
            list_status.append(status)
        if True in list_status:
            print("there is multicorrelation exist in dependent variables")
            return True
        else:
            return False
        
            
    #回归方程,支持哑铃变量
    def regressionModel(x1,x2,y):
        '''Multilinear regression model, calculating fit, P-values, confidence intervals etc.'''
        # Convert the data into a Pandas DataFrame
        df = pd.DataFrame({'x1':x1,'x2':x2,'y':y})
        
        # --- >>> START stats <<< ---
        # Fit the model
        model = ols("y~x1+x2", df).fit()
        # Print the summary
        print((model.summary()))
        return model._results.params  # should be array([-4.99754526,  3.00250049, -0.50514907])
    
        
    # Function to show the resutls of linear fit model
    def Draw_linear_line(X_parameters,Y_parameters,figname,x1Name,x2Name):
        #figname表示图表名字,用于生成独立图表fig1 = plt.figure('fig1'),fig2 = plt.figure('fig2')
        plt.figure(figname)
        #获取调整R方参数    
        df = pd.DataFrame({'x':X_parameters, 'y':Y_parameters})
        # Fit the model
        model = ols("y~x", df).fit()
        rSquared_adj=model.rsquared_adj 
        
        #处理X_parameter1数据
        X_parameter1 = []
        for i in X_parameters:
            X_parameter1.append([i])
        
        # Create linear regression object
        regr = linear_model.LinearRegression()
        regr.fit(X_parameter1, Y_parameters)
        plt.scatter(X_parameter1,Y_parameters,color='blue',label="real value")
        plt.plot(X_parameter1,regr.predict(X_parameter1),color='red',linewidth=4,label="prediction line")
        plt.title("linear regression %s and %s with adj_rSquare:%f"%(x1Name,x2Name,rSquared_adj))
        plt.xlabel('x', fontproperties=font_set)  
        plt.ylabel('y', fontproperties=font_set)  
        plt.xticks(())
        plt.yticks(())
        plt.legend()
        plt.show()      
        
    
    #绘制多元回归三维图
    Draw_multilinear()  
    #比较所有参数,观察是否存在多重共线
    All_dependentVariables_compare(list_x)              
    Draw_linear_line(x1,x2,"fig1","x1","x2")
    Draw_linear_line(x1,y,"fig4","x1","y")
    Draw_linear_line(x2,y,"fig5","x2","y")
    regressionModel(x1,x2,y)
    
        
        
    '''
    训练数据
    x1=[2,6,8,3,2,7,9,8,4,6]
    x2=[1,0,1,0,1,1,0,0,1,1]
    y=[2900,3000,4800,1800,2900,4900,4200,4800,4400,4500]
    
    x=[89,66,78,111,44,77,80,66,109,76]
    y=[4,1,3,6,1,3,3,2,5,3]
    z=[7,5.4,6.6,7.4,4.8,6.4,7,5.6,7.3,6.4]
    
    x1=[89,66,78,111,44,77,80,66,109,76]
    x2=[4,1,3,6,1,3,3,2,5,3]
    x3=[3.84,3.19,3.78,3.89,3.57,3.57,3.03,3.51,3.54,3.25]
    y=[7,5.4,6.6,7.4,4.8,6.4,7,5.6,7.3,6.4]
    
       
    '''    
    

    python信用评分卡建模(附代码,博主录制)

  • 相关阅读:
    Storm并行度详解
    Storm 1.0 新特性
    Storm的本地运行模式示例
    Storm-6 Storm的并行度、Grouping策略以及消息可靠处理机制简介
    Strom-7 Storm Trident 详细介绍
    Storm入门教程 第五章 一致性事务【转】
    storm入门教程 第四章 消息的可靠处理【转】
    Storm入门教程 第三章Storm集群安装部署步骤、storm开发环境
    Storm 01之 Storm基本概念及第一个demo
    storm入门教程 第一章 前言[转]
  • 原文地址:https://www.cnblogs.com/webRobot/p/7204329.html
Copyright © 2011-2022 走看看