zoukankan      html  css  js  c++  java
  • Codeforces Round #416 (Div. 2) C. Vladik and Memorable Trip

    地址:http://codeforces.com/contest/811/problem/C

    题目:

    C. Vladik and Memorable Trip
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Vladik often travels by trains. He remembered some of his trips especially well and I would like to tell you about one of these trips:

    Vladik is at initial train station, and now n people (including Vladik) want to get on the train. They are already lined up in some order, and for each of them the city code ai is known (the code of the city in which they are going to).

    Train chief selects some number of disjoint segments of the original sequence of people (covering entire sequence by segments is not necessary). People who are in the same segment will be in the same train carriage. The segments are selected in such way that if at least one person travels to the city x, then all people who are going to city x should be in the same railway carriage. This means that they can’t belong to different segments. Note, that all people who travel to the city x, either go to it and in the same railway carriage, or do not go anywhere at all.

    Comfort of a train trip with people on segment from position l to position r is equal to XOR of all distinct codes of cities for people on the segment from position l to position rXOR operation also known as exclusive OR.

    Total comfort of a train trip is equal to sum of comfort for each segment.

    Help Vladik to know maximal possible total comfort.

    Input

    First line contains single integer n (1 ≤ n ≤ 5000) — number of people.

    Second line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 5000), where ai denotes code of the city to which i-th person is going.

    Output

    The output should contain a single integer — maximal possible total comfort.

    Examples
    input
    6
    4 4 2 5 2 3
    output
    14
    input
    9
    5 1 3 1 5 2 4 2 5
    output
    9
    Note

    In the first test case best partition into segments is: [4, 4] [2, 5, 2] [3], answer is calculated as follows: 4 + (2 xor5) + 3 = 4 + 7 + 3 = 14

    In the second test case best partition into segments is: [3] [2, 4, 2] 5, answer calculated as follows: 3 + (2 xor 4) = 3 + 6 = 9.

     

    思路:

      首先明确:对于两个数ab,他们都只出现一次。分成两端肯定比分成一段好。因为a+b>=a^b

      主思路区间dp,dp[i]表示前i个数所能得到的最大值。

      dp[i]=max(dp[j]+f[j+1][i])。0<=j<i。

      ps:注意区间[j+1,i]必须是合法区间!

      附赠一组数据:

      4

      4 8 4 8

     1 #include <bits/stdc++.h>
     2 
     3 using namespace std;
     4 
     5 #define MP make_pair
     6 #define PB push_back
     7 typedef long long LL;
     8 typedef pair<int,int> PII;
     9 const double eps=1e-8;
    10 const double pi=acos(-1.0);
    11 const int K=5e3+7;
    12 const int mod=1e9+7;
    13 
    14 int s[K][K];
    15 int n,a[K],dp[K],r[K],l[K];
    16 priority_queue<int>q[K];
    17 int sc(int x)
    18 {
    19     int mx=r[a[x]];
    20     for(int i=x+1;i<=mx;i++)
    21     if(l[a[i]]<x)
    22         return 0;
    23     else
    24         mx=max(mx,r[a[i]]);
    25     return mx;
    26 }
    27 int main(void)
    28 {
    29     scanf("%d",&n);
    30     for(int i=1;i<=n;i++)
    31         scanf("%d",a+i),r[a[i]]=i,!l[a[i]]?l[a[i]]=i:0;
    32     for(int i=1;i<=n;i++)
    33     {
    34         int t=0;
    35         for(int j=i;j<=n;j++)
    36         {
    37             int tt=a[j];
    38             if(r[tt]==j&&l[tt]>=i)
    39             {
    40                 t^=a[j];
    41             }
    42             s[i][j]=t;
    43             //printf("%d %d:%d
    ",i,j,s[i][j]);
    44         }
    45     }
    46     for(int i=1;i<=n;i++)
    47     {
    48         int mx=0,rr=sc(i);
    49         if(!rr) continue;
    50         for(int j=1;j<i;j++)
    51         if(q[j].size())
    52             mx=max(q[j].top(),mx);
    53         q[rr].push(mx+s[i][rr]);
    54     }
    55     int ans=0;
    56     for(int i=1;i<=n;i++)
    57     if(q[i].size())
    58         ans=max(ans,q[i].top());
    59     printf("%d
    ",ans);
    60     return 0;
    61 }
    62 /*
    63 4
    64 4 8 4 8
    65 */

     

  • 相关阅读:
    JS的数据类型
    JS瀑布流布局模式(2)
    Morris Traversal方法遍历二叉树(非递归,不用栈,O(1)空间)——无非是在传统遍历过程中修改叶子结点加入后继结点信息(传统是stack记录),然后再删除恢复
    leetcode 538. Convert BST to Greater Tree
    python 闭包变量不允许write,要使用nonlocal
    机器学习中,有哪些特征选择的工程方法?
    python利用决策树进行特征选择
    机器学习 不均衡数据的处理方法
    python dns server开源列表 TODO
    python dig trace 功能实现——通过Querying name server IP来判定是否为dns tunnel
  • 原文地址:https://www.cnblogs.com/weeping/p/6924265.html
Copyright © 2011-2022 走看看