zoukankan      html  css  js  c++  java
  • Linux设备模型——设备驱动模型和sysfs文件系统解读

    本文将对Linux系统中的sysfs进行简单的分析,要分析sysfs就必须分析内核的driver-model(驱动模型),两者是紧密联系的。在分析过程中,本文将以platform总线和spi主控制器的platform驱动为例来进行讲解。其实,platform机制是基于driver-model的,通过本文,也会对platform机制有个简单的了解。

    内核版本:2.6.30

    1. What is sysfs?
      个人理解:sysfs向用户空间展示了驱动设备的层次结构。我们都知道设备和对应的驱动都是由内核管理的,这些对于用户空间是不可见的。现在通过sysfs,可以在用户空间直观的了解设备驱动的层次结构。

      我们来看看sysfs的文件结构:

    [root@yj423 /sys]#ls
    block     class     devices   fs        module
    bus       dev       firmware  kernel    power

    block:块设备

    bus:系统中的总线

    class: 设备类型,比如输入设备

    dev:系统中已注册的设备节点的视图,有两个子目录char和block。

    devices:系统中所有设备拓扑结构视图

    fireware:固件

    fs:文件系统

    kernel:内核配置选项和状态信息

    module:模块

    power:系统的电源管理数据

    2. kobject ,kset和ktype
      要分析sysfs,首先就要分析kobject和kset,因为驱动设备的层次结构的构成就是由这两个东东来完成的。

    2.1 kobject
      kobject是一个对象的抽象,它用于管理对象。每个kobject对应着sysfs中的一个目录。

      kobject用struct kobject来描述。

    struct kobject {
        const char        *name;            /*在sysfs建立目录的名字*/
        struct list_head    entry;        /*用于连接到所属kset的链表中*/
        struct kobject        *parent;    /*父对象*/
        struct kset        *kset;            /*属于哪个kset*/
        struct kobj_type    *ktype;        /*类型*/
        struct sysfs_dirent    *sd;        /*sysfs中与该对象对应的文件节点*/
        struct kref        kref;            /*对象的应用计数*/
        unsigned int state_initialized:1;
        unsigned int state_in_sysfs:1;
        unsigned int state_add_uevent_sent:1;
        unsigned int state_remove_uevent_sent:1;
        unsigned int uevent_suppress:1;
    };
    2.2 kset
      kset是一些kobject的集合,这些kobject可以有相同的ktype,也可以不同。同时,kset自己也包含一个kobject。在sysfs中,kset也是对应这一个目录,但是目录下面包含着其他的kojbect。

      kset使用struct kset来描述。

    /**
    * struct kset - a set of kobjects of a specific type, belonging to a specific subsystem.
    *
    * A kset defines a group of kobjects. They can be individually
    * different "types" but overall these kobjects all want to be grouped
    * together and operated on in the same manner. ksets are used to
    * define the attribute callbacks and other common events that happen to
    * a kobject.
    *
    * @list: the list of all kobjects for this kset
    * @list_lock: a lock for iterating over the kobjects
    * @kobj: the embedded kobject for this kset (recursion, isn't it fun...)
    * @uevent_ops: the set of uevent operations for this kset. These are
    * called whenever a kobject has something happen to it so that the kset
    * can add new environment variables, or filter out the uevents if so
    * desired.
    */
    struct kset {
    struct list_head list; /*属于该kset的kobject链表*/
    spinlock_t list_lock;
    struct kobject kobj; /*该kset内嵌的kobj*/

    struct kset_uevent_ops *uevent_ops;
    };

    2.3 ktype
    每个kobject对象都内嵌有一个ktype,该结构定义了kobject在创建和删除时所采取的行为。

    struct kobj_type {
        void (*release)(struct kobject *kobj);
        struct sysfs_ops *sysfs_ops;
        struct attribute **default_attrs;
    };

    struct sysfs_ops {
        ssize_t    (*show)(struct kobject *, struct attribute *,char *);
        ssize_t    (*store)(struct kobject *,struct attribute *,const char *, size_t);
    };

    /* FIXME
     * The *owner field is no longer used.
     * x86 tree has been cleaned up. The owner
     * attribute is still left for other arches.
     */
    struct attribute {
        const char        *name;
        struct module        *owner;
        mode_t            mode;
    };


    当kobject的引用计数为0时,通过release方法来释放相关的资源。
    attribute为属性,每个属性在sysfs中都有对应的属性文件。

    sysfs_op的两个方法用于实现读取和写入属性文件时应该采取的行为。

    2.4 kobject与kset的关系
      下面这张图非常经典。最下面的kobj都属于一个kset,同时这些kobj的父对象就是kset内嵌的kobj。通过链表,kset可以获取所有属于它的kobj。

       从sysfs角度而言,kset代表一个文件夹,而下面的kobj就是这个文件夹里面的内容,而内容有可能是文件也有可能是文件夹。


    3.举例
    在上一节中,我们知道sys下有一个bus目录,这一将分析如何通过kobject创建bus目录。

    下面代码位于drivers/base/bus.c
    int __init buses_init(void)
    {
    bus_kset = kset_create_and_add("bus", &bus_uevent_ops, NULL);
    if (!bus_kset)
    return -ENOMEM;
    return 0;
    }

    static struct kset_uevent_ops bus_uevent_ops = {
        .filter = bus_uevent_filter,
    };

    static int bus_uevent_filter(struct kset *kset, struct kobject *kobj)
    {
        struct kobj_type *ktype = get_ktype(kobj);

        if (ktype == &bus_ktype)
            return 1;
        return 0;
    }
    这里直接调用kset_create_and_add,第一个参数为要创建的目录的名字,而第三个参数表示没有父对象。
    下面代码位于drivers/base/kobject.c
    /**
    * kset_create_and_add - create a struct kset dynamically and add it to sysfs
    *
    * @name: the name for the kset
    * @uevent_ops: a struct kset_uevent_ops for the kset
    * @parent_kobj: the parent kobject of this kset, if any.
    *
    * This function creates a kset structure dynamically and registers it
    * with sysfs. When you are finished with this structure, call
    * kset_unregister() and the structure will be dynamically freed when it
    * is no longer being used.
    *
    * If the kset was not able to be created, NULL will be returned.
    */
    struct kset *kset_create_and_add(const char *name,
    struct kset_uevent_ops *uevent_ops,
    struct kobject *parent_kobj)
    {
    struct kset *kset;
    int error;

    kset = kset_create(name, uevent_ops, parent_kobj); /*建立kset,设置某些字段*/
    if (!kset)
    return NULL;
    error = kset_register(kset); /*添加kset到sysfs*/
    if (error) {
    kfree(kset);
    return NULL;
    }
    return kset;
    }
    这里主要调用了两个函数,接下分别来看下。

    3.1 kset_create函数
    下面代码位于drivers/base/kobject.c

    /**
    * kset_create - create a struct kset dynamically
    *
    * @name: the name for the kset
    * @uevent_ops: a struct kset_uevent_ops for the kset
    * @parent_kobj: the parent kobject of this kset, if any.
    *
    * This function creates a kset structure dynamically. This structure can
    * then be registered with the system and show up in sysfs with a call to
    * kset_register(). When you are finished with this structure, if
    * kset_register() has been called, call kset_unregister() and the
    * structure will be dynamically freed when it is no longer being used.
    *
    * If the kset was not able to be created, NULL will be returned.
    */
    static struct kset *kset_create(const char *name,
    struct kset_uevent_ops *uevent_ops,
    struct kobject *parent_kobj)
    {
    struct kset *kset;

    kset = kzalloc(sizeof(*kset), GFP_KERNEL);/*分配kset*/
    if (!kset)
    return NULL;
    kobject_set_name(&kset->kobj, name);/*设置kobj->name*/
    kset->uevent_ops = uevent_ops;
    kset->kobj.parent = parent_kobj; /*设置父对象*/

    /*
    * The kobject of this kset will have a type of kset_ktype and belong to
    * no kset itself. That way we can properly free it when it is
    * finished being used.
    */
    kset->kobj.ktype = &kset_ktype;
    kset->kobj.kset = NULL; /*本keset不属于任何kset*/

    return kset;
    }

    这个函数中,动态分配了kset结构,调用kobject_set_name设置kset->kobj->name为bus,也就是我们要创建的目录bus。同时这里kset->kobj.parent为NULL,

    也就是没有父对象。因为要创建的bus目录是在sysfs所在的根目录创建的,自然没有父对象。

    随后简要看下由kobject_set_name函数调用引发的一系列调用。

    /**
    * kobject_set_name - Set the name of a kobject
    * @kobj: struct kobject to set the name of
    * @fmt: format string used to build the name
    *
    * This sets the name of the kobject. If you have already added the
    * kobject to the system, you must call kobject_rename() in order to
    * change the name of the kobject.
    */
    int kobject_set_name(struct kobject *kobj, const char *fmt, ...)
    {
    va_list vargs;
    int retval;

    va_start(vargs, fmt);
    retval = kobject_set_name_vargs(kobj, fmt, vargs);
    va_end(vargs);

    return retval;
    }

    /**
     * kobject_set_name_vargs - Set the name of an kobject
     * @kobj: struct kobject to set the name of
     * @fmt: format string used to build the name
     * @vargs: vargs to format the string.
     */
    int kobject_set_name_vargs(struct kobject *kobj, const char *fmt,
                      va_list vargs)
    {
        const char *old_name = kobj->name;
        char *s;

        if (kobj->name && !fmt)
            return 0;

        kobj->name = kvasprintf(GFP_KERNEL, fmt, vargs);
        if (!kobj->name)
            return -ENOMEM;

        /* ewww... some of these buggers have '/' in the name ... */
        while ((s = strchr(kobj->name, '/')))
            s[0] = '!';

        kfree(old_name);
        return 0;
    }

    /* Simplified asprintf. */
    char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)
    {
        unsigned int len;
        char *p;
        va_list aq;

        va_copy(aq, ap);
        len = vsnprintf(NULL, 0, fmt, aq);
        va_end(aq);

        p = kmalloc(len+1, gfp);
        if (!p)
            return NULL;

        vsnprintf(p, len+1, fmt, ap);

        return p;
    }
    3.2 kset_register
    下面代码位于drivers/base/kobject.c。
    /**
    * kset_register - initialize and add a kset.
    * @k: kset.
    */
    int kset_register(struct kset *k)
    {
    int err;

    if (!k)
    return -EINVAL;

    kset_init(k); /*初始化kset*/
    err = kobject_add_internal(&k->kobj); /*在sysfs中建立目录*/
    if (err)
    return err;
    kobject_uevent(&k->kobj, KOBJ_ADD);
    return 0;
    }
    这里面调用了3个函数。这里先介绍前两个函数。

    3.2.1 kset_init
      该函数用于初始化kset。

      下面代码位于drivers/base/kobject.c。

    /**
    * kset_init - initialize a kset for use
    * @k: kset
    */
    void kset_init(struct kset *k)
    {
    kobject_init_internal(&k->kobj);/*初始化kobject的某些字段*/
    INIT_LIST_HEAD(&k->list); /*初始化链表头*/
    spin_lock_init(&k->list_lock); /*初始化自旋锁*/
    }

    static void kobject_init_internal(struct kobject *kobj)
    {
        if (!kobj)
            return;
        kref_init(&kobj->kref);           /*初始化引用基计数*/
        INIT_LIST_HEAD(&kobj->entry);    /*初始化链表头*/
        kobj->state_in_sysfs = 0;
        kobj->state_add_uevent_sent = 0;
        kobj->state_remove_uevent_sent = 0;
        kobj->state_initialized = 1;
    }
    3.2.2 kobject_add_internal
      该函数将在sysfs中建立目录。

     下面代码位于drivers/base/kobject.c。
    static int kobject_add_internal(struct kobject *kobj)
    {
    int error = 0;
    struct kobject *parent;

    if (!kobj)
    return -ENOENT;
    /*检查name字段是否存在*/
    if (!kobj->name || !kobj->name[0]) {
    WARN(1, "kobject: (%p): attempted to be registered with empty "
    "name! ", kobj);
    return -EINVAL;
    }

    parent = kobject_get(kobj->parent); /*有父对象则增加父对象引用计数*/

    /* join kset if set, use it as parent if we do not already have one */
    if (kobj->kset) {
    if (!parent)
    /*kobj属于某个kset,但是该kobj没有父对象,则以kset的kobj作为父对象*/
    parent = kobject_get(&kobj->kset->kobj);
    kobj_kset_join(kobj); /*将kojbect添加到kset结构中的链表当中*/
    kobj->parent = parent;
    }

    pr_debug("kobject: '%s' (%p): %s: parent: '%s', set: '%s' ",
    kobject_name(kobj), kobj, __func__,
    parent ? kobject_name(parent) : "<NULL>",
    kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");

    error = create_dir(kobj); /*根据kobj->name在sys中建立目录*/
    if (error) {
    kobj_kset_leave(kobj); /*删除链表项*/
    kobject_put(parent); /*减少引用计数*/
    kobj->parent = NULL;

    /* be noisy on error issues */
    if (error == -EEXIST)
    printk(KERN_ERR "%s failed for %s with "
    "-EEXIST, don't try to register things with "
    "the same name in the same directory. ",
    __func__, kobject_name(kobj));
    else
    printk(KERN_ERR "%s failed for %s (%d) ",
    __func__, kobject_name(kobj), error);
    dump_stack();
    } else
    kobj->state_in_sysfs = 1;

    return error;
    }

    在上面的kset_create中有kset->kobj.kset = NULL,因此if (kobj->kset)条件不满足。因此在这个函数中,对name进行了必要的检查之后,调用了create_dir在sysfs中创建目录。

    在create_dir执行完成以后会在sysfs的根目录(/sys/)建立文件夹bus。该函数的详细分析将在后面给出。

    至此,对bus目录的建立有了简单而直观的了解。我们可以看出kset其实就是表示一个文件夹,而kset本身也含有一个kobject,而该kobject的name字段即为该目录的名字,本例中为bus。

    4. driver model
    第2节所介绍的是最底层,最核心的内容。下面开始将描述较为高层的内容。

    Linux设备模型使用了三个数据结构分别来描述总线、设备和驱动。所有的设备和对应的驱动都必须挂载在某一个总线上,通过总线,可以绑定设备和驱动。

    这个属于分离的思想,将设备和驱动分开管理。

    同时驱动程序可以了解到所有它所支持的设备,同样的,设备也能知道它对应驱动程序。

    4.1 bus
    总线是处理器与一个设备或者多个设备之间的通道。在设备模型中,所有的设备都挂载在某一个总线上。总线使用struct bus_type来表述。

    下列代码位于include/linux/device.h。


    struct bus_type {
        const char        *name;
        struct bus_attribute    *bus_attrs;
        struct device_attribute    *dev_attrs;
        struct driver_attribute    *drv_attrs;

        int (*match)(struct device *dev, struct device_driver *drv);
        int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
        int (*probe)(struct device *dev);
        int (*remove)(struct device *dev);
        void (*shutdown)(struct device *dev);

        int (*suspend)(struct device *dev, pm_message_t state);
        int (*suspend_late)(struct device *dev, pm_message_t state);
        int (*resume_early)(struct device *dev);
        int (*resume)(struct device *dev);

        struct dev_pm_ops *pm;

        struct bus_type_private *p;
    };

    /**
     * struct bus_type_private - structure to hold the private to the driver core portions of the bus_type structure.
     *
     * @subsys - the struct kset that defines this bus.  This is the main kobject
     * @drivers_kset - the list of drivers associated with this bus
     * @devices_kset - the list of devices associated with this bus
     * @klist_devices - the klist to iterate over the @devices_kset
     * @klist_drivers - the klist to iterate over the @drivers_kset
     * @bus_notifier - the bus notifier list for anything that cares about things
     * on this bus.
     * @bus - pointer back to the struct bus_type that this structure is associated
     * with.
     *
     * This structure is the one that is the actual kobject allowing struct
     * bus_type to be statically allocated safely.  Nothing outside of the driver
     * core should ever touch these fields.
     */
    struct bus_type_private {
        struct kset subsys;
        struct kset *drivers_kset;
        struct kset *devices_kset;
        struct klist klist_devices;
        struct klist klist_drivers;
        struct blocking_notifier_head bus_notifier;
        unsigned int drivers_autoprobe:1;
        struct bus_type *bus;
    };
    我们看到每个bus_type都包含一个kset对象subsys,该kset在/sys/bus/目录下有着对应的一个目录,目录名即为字段name。后面我们将看到platform总线的建立。
    drivers_kset和devices_kset对应着两个目录,该两个目录下将包含该总线上的设备和相应的驱动程序。

    同时总线上的设备和驱动将分别保存在两个链表中:klist_devices和klist_drivers。

    4.2 device
    设备对象在driver-model中使用struct device来表示。

    下列代码位于include/linux/device.h。
    struct device {
    struct device *parent;

    struct device_private *p;

    struct kobject kobj;
    const char *init_name; /* initial name of the device */
    struct device_type *type;

    struct semaphore sem; /* semaphore to synchronize calls to
    * its driver.
    */

    struct bus_type *bus; /* type of bus device is on */
    struct device_driver *driver; /* which driver has allocated this
    device */
    void *driver_data; /* data private to the driver */
    void *platform_data; /* Platform specific data, device
    core doesn't touch it */
    struct dev_pm_info power;

    #ifdef CONFIG_NUMA
    int numa_node; /* NUMA node this device is close to */
    #endif
    u64 *dma_mask; /* dma mask (if dma'able device) */
    u64 coherent_dma_mask;/* Like dma_mask, but for
    alloc_coherent mappings as
    not all hardware supports
    64 bit addresses for consistent
    allocations such descriptors. */

    struct device_dma_parameters *dma_parms;

    struct list_head dma_pools; /* dma pools (if dma'ble) */

    struct dma_coherent_mem *dma_mem; /* internal for coherent mem
    override */
    /* arch specific additions */
    struct dev_archdata archdata;

    dev_t devt; /* dev_t, creates the sysfs "dev" */

    spinlock_t devres_lock;
    struct list_head devres_head;

    struct klist_node knode_class;
    struct class *class;
    struct attribute_group **groups; /* optional groups */

    void (*release)(struct device *dev);
    };

    /**
     * struct device_private - structure to hold the private to the driver core portions of the device structure.
     *
     * @klist_children - klist containing all children of this device
     * @knode_parent - node in sibling list
     * @knode_driver - node in driver list
     * @knode_bus - node in bus list
     * @device - pointer back to the struct class that this structure is
     * associated with.
     *
     * Nothing outside of the driver core should ever touch these fields.
     */
    struct device_private {
        struct klist klist_children;
        struct klist_node knode_parent;
        struct klist_node knode_driver;
        struct klist_node knode_bus;
        struct device *device;
    };
    device本身包含一个kobject,也就是说这个device在sysfs的某个地方有着一个对应的目录。

    该device所挂载的bus由knode_bus指定。

    该device所对应的设备驱动由knode_driver指定。

    4.3 driver
    设备设备对象在driver-model中使用struct device_driver来表示。

    下列代码位于include/linux/device.h。
    struct device_driver {
    const char *name;
    struct bus_type *bus;

    struct module *owner;
    const char *mod_name; /* used for built-in modules */

    int (*probe) (struct device *dev);
    int (*remove) (struct device *dev);
    void (*shutdown) (struct device *dev);
    int (*suspend) (struct device *dev, pm_message_t state);
    int (*resume) (struct device *dev);
    struct attribute_group **groups;

    struct dev_pm_ops *pm;

    struct driver_private *p;
    };

    struct driver_private {
        struct kobject kobj;
        struct klist klist_devices;
        struct klist_node knode_bus;
        struct module_kobject *mkobj;
        struct device_driver *driver;
    }; 
    device_driver本身包含一个kobject,也就是说这个device_driver在sysfs的某个地方有着一个对应的目录。
    该设备驱动所支持的设备由klist_devices指定。

    该设备驱动所挂载的总线由knode_bus制定。

    5. Bus举例
    本节我们将以platform总线为例,来看看,/sys/bus/platform是如何建立的。

    platform总线的注册是由platform_bus_init函数完成的。该函数在内核启动阶段被调用,我们来简单看下调用过程:

    start_kernel() -> rest_init() ->kernel_init() -> do_basic_setup() -> driver_init() -> platform_bus_init()。

    注:kernel_init()是在rest_init函数中创建内核线程来执行的。

    int __init platform_bus_init(void)
    {
        int error;

        early_platform_cleanup();

        error = device_register(&platform_bus);
        if (error)
            return error;
        error =  bus_register(&platform_bus_type);
        if (error)
            device_unregister(&platform_bus);
        return error;
    }
    struct bus_type platform_bus_type = {
    .name = "platform",
    .dev_attrs = platform_dev_attrs,
    .match = platform_match,
    .uevent = platform_uevent,
    .pm = PLATFORM_PM_OPS_PTR,
    };
    EXPORT_SYMBOL_GPL(platform_bus_type);
    从bus_type,我们看到该总线的名字为platform。
    调用了两个函数,我们只关注bus_register函数。


    /**
    * bus_register - register a bus with the system.
    * @bus: bus.
    *
    * Once we have that, we registered the bus with the kobject
    * infrastructure, then register the children subsystems it has:
    * the devices and drivers that belong to the bus.
    */
    int bus_register(struct bus_type *bus)
    {
    int retval;
    struct bus_type_private *priv;

    priv = kzalloc(sizeof(struct bus_type_private), GFP_KERNEL);
    if (!priv)
    return -ENOMEM;
    /*互相保存*/
    priv->bus = bus;
    bus->p = priv;

    BLOCKING_INIT_NOTIFIER_HEAD(&priv->bus_notifier);
    /*设定kobject->name*/
    retval = kobject_set_name(&priv->subsys.kobj, "%s", bus->name);
    if (retval)
    goto out;

    priv->subsys.kobj.kset = bus_kset;
    priv->subsys.kobj.ktype = &bus_ktype;
    priv->drivers_autoprobe = 1;

    /*注册kset,在bus/建立目录XXX,XXX为bus->name*/
    retval = kset_register(&priv->subsys);
    if (retval)
    goto out;

    /*创建属性,在bus/XXX/建立文件uevent*/
    retval = bus_create_file(bus, &bus_attr_uevent);
    if (retval)
    goto bus_uevent_fail;

    /*创建kset,在bus/XXX/建立目录devices*/
    priv->devices_kset = kset_create_and_add("devices", NULL,
    &priv->subsys.kobj);
    if (!priv->devices_kset) {
    retval = -ENOMEM;
    goto bus_devices_fail;
    }

    /*创建kset,在bus/XXX/建立目录drivers*/
    priv->drivers_kset = kset_create_and_add("drivers", NULL,
    &priv->subsys.kobj);
    if (!priv->drivers_kset) {
    retval = -ENOMEM;
    goto bus_drivers_fail;
    }
    /*初始化2个内核链表,*/
    klist_init(&priv->klist_devices, klist_devices_get, klist_devices_put);
    klist_init(&priv->klist_drivers, NULL, NULL);

    /*创建属性,在bus/XXX/建立文件drivers_autoprobe和drivers_probe*/
    retval = add_probe_files(bus);
    if (retval)
    goto bus_probe_files_fail;
    /*根据bus->bus_attribute创建属性,在bus/XXX/下建立相应的文件d*/
    retval = bus_add_attrs(bus);
    if (retval)
    goto bus_attrs_fail;

    pr_debug("bus: '%s': registered ", bus->name);
    return 0;

    bus_attrs_fail:
    remove_probe_files(bus);
    bus_probe_files_fail:
    kset_unregister(bus->p->drivers_kset);
    bus_drivers_fail:
    kset_unregister(bus->p->devices_kset);
    bus_devices_fail:
    bus_remove_file(bus, &bus_attr_uevent);
    bus_uevent_fail:
    kset_unregister(&bus->p->subsys);
    kfree(bus->p);
    out:
    bus->p = NULL;
    return retval;
    }
    EXPORT_SYMBOL_GPL(bus_register);

    函数中,首先调用kobject_set_name设置了bus对象的subsys.kobject->name 为 platform,也就是说会建立一个名为platform的目录。kobject_set_name函数在3.1小节中已经给出。
    在这里还用到了bus_kset这个变量,这个变量就是在第3节buses_init函数中建立bus目录所对应的kset对象。

    接着,priv->subsys.kobj.kset = bus_kset,设置subsys的kobj在bus_kset对象包含的集合中,也就是说bus目录下将包含subsys对象所对应的目录,即platform。

    紧接着调用了kset_register,参数为&priv->subsys。该函数在3.2节中以给出。在该函数的调用过程中,将调用kobj_kset_join函数,该函数将kobject添加到kobject->kset的链表中。


    /* add the kobject to its kset's list */
    static void kobj_kset_join(struct kobject *kobj)
    {
    if (!kobj->kset)
    return;

    kset_get(kobj->kset); /*增加kset引用计数*/
    spin_lock(&kobj->kset->list_lock);
    list_add_tail(&kobj->entry, &kobj->kset->list); /*将kojbect添加到kset结构中的链表当中*/
    spin_unlock(&kobj->kset->list_lock);
    }
    kset_register函数执行完成后,将在/sys/bus/下建立目录platform。此刻,我们先来看下kset和kobject之间的关系。


    然后,调用了bus_create_file函数在/sys/bus/platform/下建立文件uevent。

    int bus_create_file(struct bus_type *bus, struct bus_attribute *attr)
    {
    int error;
    if (bus_get(bus)) {
    error = sysfs_create_file(&bus->p->subsys.kobj, &attr->attr);
    bus_put(bus);
    } else
    error = -EINVAL;
    return error;
    }
    EXPORT_SYMBOL_GPL(bus_create_file);
    有关底层的sysfs将在后面叙述,这里只要关注参数&bus->p->subsys.kobj,表示在该kset下建立文件,也就是platform下建立。
    接着调用了2次kset_create_and_add,分别在/sys/bus/platform/下建立了文件夹devices和drivers。该函数位于第3节开始处。

    这里和第3节调用kset_create_and_add时的最主要一个区别就是:此时的parent参数不为NULL,而是&priv->subsys.kobj。

    也就是说,将要创建的kset的kobject->parent = &priv->subsys.kobj,也即新建的kset被包含在platform文件夹对应的kset中。

    我们来看下关系图:


    随后,调用了add_probe_files创建了属性文件drivers_autoprobe和drivers_probe。

    static int add_probe_files(struct bus_type *bus)
    {
    int retval;

    retval = bus_create_file(bus, &bus_attr_drivers_probe);
    if (retval)
    goto out;

    retval = bus_create_file(bus, &bus_attr_drivers_autoprobe);
    if (retval)
    bus_remove_file(bus, &bus_attr_drivers_probe);
    out:
    return retval;
    }
    该函数只是简单的调用了两次bus_create_file,该函数已在前面叙述过。
    最后调用bus_add_attrs创建总线相关的属性文件。

    /**
    * bus_add_attrs - Add default attributes for this bus.
    * @bus: Bus that has just been registered.
    */

    static int bus_add_attrs(struct bus_type *bus)
    {
    int error = 0;
    int i;

    if (bus->bus_attrs) {
    for (i = 0; attr_name(bus->bus_attrs[i]); i++) {
    error = bus_create_file(bus, &bus->bus_attrs[i]);
    if (error)
    goto err;
    }
    }
    done:
    return error;
    err:
    while (--i >= 0)
    bus_remove_file(bus, &bus->bus_attrs[i]);
    goto done;
    }
    我们可以看到这个函数将根据bus_type->bus_arrts来创建属性文件。不过,在本例中,bus_arrts从未给出定义,因此次函数不做任何工作。
    好了,整个bus_register调用完成了,我们来看下sysfs中实际的情况。

    [root@yj423 platform]#pwd
    /sys/bus/platform
    [root@yj423 platform]#ls
    devices            drivers            drivers_autoprobe  drivers_probe      uevent
    最后,我们对整个bus_register的过程进行一个小结。

    6. device举例
    本节将首先讲述如何在/sys/devices下建立虚拟的platform设备,然后再讲述如何在/sys/devices/platform/下建立子设备。

    6.1 虚拟的platform设备
    之所以叫虚拟是因为这个platform并不代表任何实际存在的设备,但是platform将是所有具体设备的父设备。

    在第5节,platform_bus_init函数中还调用了device_register,现在对其做出分析。

    int __init platform_bus_init(void)
    {
    int error;

    early_platform_cleanup();

    error = device_register(&platform_bus);
    if (error)
    return error;
    error = bus_register(&platform_bus_type);
    if (error)
    device_unregister(&platform_bus);
    return error;
    }

    struct device platform_bus = {
        .init_name    = "platform",
    };
    EXPORT_SYMBOL_GPL(platform_bus)
    下列函数位于drivers/base/core.c。
    /**
    * device_register - register a device with the system.
    * @dev: pointer to the device structure
    *
    * This happens in two clean steps - initialize the device
    * and add it to the system. The two steps can be called
    * separately, but this is the easiest and most common.
    * I.e. you should only call the two helpers separately if
    * have a clearly defined need to use and refcount the device
    * before it is added to the hierarchy.
    *
    * NOTE: _Never_ directly free @dev after calling this function, even
    * if it returned an error! Always use put_device() to give up the
    * reference initialized in this function instead.
    */
    int device_register(struct device *dev)
    {
    device_initialize(dev); /*初始化dev的某些字段*/
    return device_add(dev); /*将设备添加到系统中*/
    }

    一个设备的注册分成两部,每步通过调用一个函数函数。首先先看第一步:

    下列函数位于drivers/base/core.c。
    /**
    * device_initialize - init device structure.
    * @dev: device.
    *
    * This prepares the device for use by other layers by initializing
    * its fields.
    * It is the first half of device_register(), if called by
    * that function, though it can also be called separately, so one
    * may use @dev's fields. In particular, get_device()/put_device()
    * may be used for reference counting of @dev after calling this
    * function.
    *
    * NOTE: Use put_device() to give up your reference instead of freeing
    * @dev directly once you have called this function.
    */
    void device_initialize(struct device *dev)
    {
        dev->kobj.kset = devices_kset;        /*设置kobj属于哪个kset,/sys/devices/*/
        kobject_init(&dev->kobj, &device_ktype);/*初始化dev->kobj*/
        INIT_LIST_HEAD(&dev->dma_pools);    /*初始化链表头*/
        init_MUTEX(&dev->sem);                /*初始化互斥体*/
        spin_lock_init(&dev->devres_lock);    /*初始化自旋锁*/
        INIT_LIST_HEAD(&dev->devres_head);    /*初始化链表头*/
        device_init_wakeup(dev, 0);            /*设置该device不能唤醒*/
        device_pm_init(dev);                /*设置该device可操作*/
        set_dev_node(dev, -1);                /*设置NUMA节点*/
    }
    6.1.1 有关devices_kset
    首先其中用到了devices_kset对象,这个对象和第3节当中的bus_kset是同样的性质,也就是说该对象表示一个目录。

    该对象的建立是在devices_init函数中完成的。
    int __init devices_init(void)
    {
    devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
    if (!devices_kset)
    return -ENOMEM;
    dev_kobj = kobject_create_and_add("dev", NULL);
    if (!dev_kobj)
    goto dev_kobj_err;
    sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
    if (!sysfs_dev_block_kobj)
    goto block_kobj_err;
    sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
    if (!sysfs_dev_char_kobj)
    goto char_kobj_err;

    return 0;

    char_kobj_err:
    kobject_put(sysfs_dev_block_kobj);
    block_kobj_err:
    kobject_put(dev_kobj);
    dev_kobj_err:
    kset_unregister(devices_kset);
    return -ENOMEM;
    }
    由此可见,devices_kset对象表示的目录为/sys下的devices目录。
    6.1.2 kobject_init
    下列函数位于lib/kojbect.c。
    /**
    * kobject_init - initialize a kobject structure
    * @kobj: pointer to the kobject to initialize
    * @ktype: pointer to the ktype for this kobject.
    *
    * This function will properly initialize a kobject such that it can then
    * be passed to the kobject_add() call.
    *
    * After this function is called, the kobject MUST be cleaned up by a call
    * to kobject_put(), not by a call to kfree directly to ensure that all of
    * the memory is cleaned up properly.
    */
    void kobject_init(struct kobject *kobj, struct kobj_type *ktype)
    {
    char *err_str;

    if (!kobj) {
    err_str = "invalid kobject pointer!";
    goto error;
    }
    if (!ktype) {
    err_str = "must have a ktype to be initialized properly! ";
    goto error;
    }
    if (kobj->state_initialized) {
    /* do not error out as sometimes we can recover */
    printk(KERN_ERR "kobject (%p): tried to init an initialized "
    "object, something is seriously wrong. ", kobj);
    dump_stack();
    }

    kobject_init_internal(kobj);
    kobj->ktype = ktype;
    return;

    error:
    printk(KERN_ERR "kobject (%p): %s ", kobj, err_str);
    dump_stack();
    }
    EXPORT_SYMBOL(kobject_init);

    static void kobject_init_internal(struct kobject *kobj)
    {
        if (!kobj)
            return;
        kref_init(&kobj->kref);            /*初始化引用基计数*/
        INIT_LIST_HEAD(&kobj->entry);    /*初始化链表头*/
        kobj->state_in_sysfs = 0;
        kobj->state_add_uevent_sent = 0;
        kobj->state_remove_uevent_sent = 0;
        kobj->state_initialized = 1;
    }
    该函数在做了一系列的必要检查后,调用kobject_init_internal初始化了kobject的某些字段。
    6.1.3 device_init_wakeup
    参数val为0,设置该device不能够唤醒。
    #ifdef CONFIG_PM

    /* changes to device_may_wakeup take effect on the next pm state change.
    * by default, devices should wakeup if they can.
    */
    static inline void device_init_wakeup(struct device *dev, int val)
    {
    dev->power.can_wakeup = dev->power.should_wakeup = !!val;
    }
    。。。。。。
    #else /* !CONFIG_PM */

    /* For some reason the next two routines work even without CONFIG_PM */
    static inline void device_init_wakeup(struct device *dev, int val)
    {
        dev->power.can_wakeup = !!val;
    }
    。。。。。。
    #endif

    6.1.4 device_pm_init
    设置电源的状态。
    static inline void device_pm_init(struct device *dev)
    {
    dev->power.status = DPM_ON;    /*该device被认为可操作*/
    }
    6.1.5 set_dev_node
    如果使用NUMA,则设置NUMA节点。
    #ifdef CONFIG_NUMA
    。。。。。。
    static inline void set_dev_node(struct device *dev, int node)
    {
    dev->numa_node = node;
    }
    #else
    。。。。。。
    static inline void set_dev_node(struct device *dev, int node)
    {
    }
    #endif

    6.2 device_add
    接下来是注册的第二步:调用device_add。

    /**
    * device_add - add device to device hierarchy.
    * @dev: device.
    *
    * This is part 2 of device_register(), though may be called
    * separately _iff_ device_initialize() has been called separately.
    *
    * This adds @dev to the kobject hierarchy via kobject_add(), adds it
    * to the global and sibling lists for the device, then
    * adds it to the other relevant subsystems of the driver model.
    *
    * NOTE: _Never_ directly free @dev after calling this function, even
    * if it returned an error! Always use put_device() to give up your
    * reference instead.
    */
    int device_add(struct device *dev)
    {
    struct device *parent = NULL;
    struct class_interface *class_intf;
    int error = -EINVAL;

    dev = get_device(dev); /*增加引用计数*/
    if (!dev)
    goto done;

    dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); /*分配device_private结构*/
    if (!dev->p) {
    error = -ENOMEM;
    goto done;
    }
    dev->p->device = dev; /*保存dev*/
    klist_init(&dev->p->klist_children, klist_children_get, /*初始化内核链表*/
    klist_children_put);

    /*
    * for statically allocated devices, which should all be converted
    * some day, we need to initialize the name. We prevent reading back
    * the name, and force the use of dev_name()
    */
    if (dev->init_name) {
    dev_set_name(dev, dev->init_name); /*dev->kobject->name = dev->init_name*/
    dev->init_name = NULL;
    }

    if (!dev_name(dev)) /*检查dev->kobject->name*/
    goto name_error;

    pr_debug("device: '%s': %s ", dev_name(dev), __func__);

    parent = get_device(dev->parent); /*增加父设备引用计数*/
    setup_parent(dev, parent); /*设置dev->kobject->parent*/

    /* use parent numa_node */
    if (parent)
    set_dev_node(dev, dev_to_node(parent));

    /* first, register with generic layer. */
    /* we require the name to be set before, and pass NULL */
    /* 执行完以后,将在/sys/devices/下建立目录XXX,目录名XXX为dev->kobj->name*/
    error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
    if (error)
    goto Error;

    /* notify platform of device entry */
    if (platform_notify)
    platform_notify(dev);

    /*在XXX下建立文件uevent*/
    error = device_create_file(dev, &uevent_attr);
    if (error)
    goto attrError;

    if (MAJOR(dev->devt)) {/*主设备号不为0*/
    error = device_create_file(dev, &devt_attr);/*创建属性文件dev*/
    if (error)
    goto ueventattrError;

    /* 在sys/dev/char/下建立symlink,名字为主设备号:次设备号,该链接指向XXX */
    error = device_create_sys_dev_entry(dev);
    if (error)
    goto devtattrError;
    }

    error = device_add_class_symlinks(dev);
    if (error)
    goto SymlinkError;
    error = device_add_attrs(dev); /*添加类设备属型文件和属性组*/
    if (error)
    goto AttrsError;
    error = bus_add_device(dev); /*添加3个symlink*/
    if (error)
    goto BusError;
    error = dpm_sysfs_add(dev); /*创建power子目录,并在其下添加电源管理的属性组文件*/
    if (error)
    goto DPMError;
    device_pm_add(dev); /*将该device添加到电源管理链表中*/

    /* Notify clients of device addition. This call must come
    * after dpm_sysf_add() and before kobject_uevent().
    */
    if (dev->bus)
    blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
    BUS_NOTIFY_ADD_DEVICE, dev);

    kobject_uevent(&dev->kobj, KOBJ_ADD); /*通知用户层*/
    bus_attach_device(dev); /*将设备添加到总线的设备链表中,并尝试获取驱动*/
    if (parent)
    klist_add_tail(&dev->p->knode_parent, /*有父设备,则将该设备添加到父设备的儿子链表中*/
    &parent->p->klist_children);

    if (dev->class) { /*该设备属于某个设备类*/
    mutex_lock(&dev->class->p->class_mutex);
    /* tie the class to the device */
    klist_add_tail(&dev->knode_class, /*将device添加到class的类设备链表中*/
    &dev->class->p->class_devices);

    /* notify any interfaces that the device is here */
    list_for_each_entry(class_intf,
    &dev->class->p->class_interfaces, node)
    if (class_intf->add_dev)
    class_intf->add_dev(dev, class_intf);
    mutex_unlock(&dev->class->p->class_mutex);
    }
    done:
    put_device(dev);
    return error;
    DPMError:
    bus_remove_device(dev);
    BusError:
    device_remove_attrs(dev);
    AttrsError:
    device_remove_class_symlinks(dev);
    SymlinkError:
    if (MAJOR(dev->devt))
    device_remove_sys_dev_entry(dev);
    devtattrError:
    if (MAJOR(dev->devt))
    device_remove_file(dev, &devt_attr);
    ueventattrError:
    device_remove_file(dev, &uevent_attr);
    attrError:
    kobject_uevent(&dev->kobj, KOBJ_REMOVE);
    kobject_del(&dev->kobj);
    Error:
    cleanup_device_parent(dev);
    if (parent)
    put_device(parent);
    name_error:
    kfree(dev->p);
    dev->p = NULL;
    goto done;
    }

    该函数调用了非常多的其他函数,接下来对主要的函数做出分析。
    6.2.1 setup_parent函数
    下列代码位于drivers/base/core.c。
    static void setup_parent(struct device *dev, struct device *parent)
    {
    struct kobject *kobj;
    kobj = get_device_parent(dev, parent);
    if (kobj)
    dev->kobj.parent = kobj;
    }

    static struct kobject *get_device_parent(struct device *dev,
                         struct device *parent)
    {
        /* class devices without a parent live in /sys/class/<classname>/ */
        if (dev->class && (!parent || parent->class != dev->class))
            return &dev->class->p->class_subsys.kobj;
        /* all other devices keep their parent */
        else if (parent)
            return &parent->kobj;

        return NULL;
    }
    该函数将设置dev对象的parent。在这里实际传入的parent为NULL,同时dev->class也没有定义过。因此这个函数什么都没有做。
    6.2.2 kobject_add函数
    下列代码位于lib/kobject.c。
    /**
    * kobject_add - the main kobject add function
    * @kobj: the kobject to add
    * @parent: pointer to the parent of the kobject.
    * @fmt: format to name the kobject with.
    *
    * The kobject name is set and added to the kobject hierarchy in this
    * function.
    *
    * If @parent is set, then the parent of the @kobj will be set to it.
    * If @parent is NULL, then the parent of the @kobj will be set to the
    * kobject associted with the kset assigned to this kobject. If no kset
    * is assigned to the kobject, then the kobject will be located in the
    * root of the sysfs tree.
    *
    * If this function returns an error, kobject_put() must be called to
    * properly clean up the memory associated with the object.
    * Under no instance should the kobject that is passed to this function
    * be directly freed with a call to kfree(), that can leak memory.
    *
    * Note, no "add" uevent will be created with this call, the caller should set
    * up all of the necessary sysfs files for the object and then call
    * kobject_uevent() with the UEVENT_ADD parameter to ensure that
    * userspace is properly notified of this kobject's creation.
    */
    int kobject_add(struct kobject *kobj, struct kobject *parent,
    const char *fmt, ...)
    {
    va_list args;
    int retval;

    if (!kobj)
    return -EINVAL;

    if (!kobj->state_initialized) {
    printk(KERN_ERR "kobject '%s' (%p): tried to add an "
    "uninitialized object, something is seriously wrong. ",
    kobject_name(kobj), kobj);
    dump_stack();
    return -EINVAL;
    }
    va_start(args, fmt);
    retval = kobject_add_varg(kobj, parent, fmt, args);
    va_end(args);

    return retval;
    }
    EXPORT_SYMBOL(kobject_add);

    static int kobject_add_varg(struct kobject *kobj, struct kobject *parent,
                    const char *fmt, va_list vargs)
    {
        int retval;

        retval = kobject_set_name_vargs(kobj, fmt, vargs);
        if (retval) {
            printk(KERN_ERR "kobject: can not set name properly! ");
            return retval;
        }
        kobj->parent = parent;
        return kobject_add_internal(kobj);
    }

    static int kobject_add_internal(struct kobject *kobj)
    {
        int error = 0;
        struct kobject *parent;

        if (!kobj)
            return -ENOENT;
        /*检查name字段是否存在*/
        if (!kobj->name || !kobj->name[0]) {
            WARN(1, "kobject: (%p): attempted to be registered with empty "
                 "name! ", kobj);
            return -EINVAL;
        }

        parent = kobject_get(kobj->parent);    /*有父对象则增加父对象引用计数*/

        /* join kset if set, use it as parent if we do not already have one */
        if (kobj->kset) {    
            if (!parent)
                /*kobj属于某个kset,但是该kobj没有父对象,则以kset的kobj作为父对象*/
                parent = kobject_get(&kobj->kset->kobj);
            kobj_kset_join(kobj);        /*将kojbect添加到kset结构中的链表当中*/
            kobj->parent = parent;
        }

        pr_debug("kobject: '%s' (%p): %s: parent: '%s', set: '%s' ",
             kobject_name(kobj), kobj, __func__,
             parent ? kobject_name(parent) : "<NULL>",
             kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");

        error = create_dir(kobj);    /*根据kobj->name在sys中建立目录*/
        if (error) {
            kobj_kset_leave(kobj);    /*删除链表项*/
            kobject_put(parent);    /*减少引用计数*/
            kobj->parent = NULL;

            /* be noisy on error issues */
            if (error == -EEXIST)
                printk(KERN_ERR "%s failed for %s with "
                       "-EEXIST, don't try to register things with "
                       "the same name in the same directory. ",
                       __func__, kobject_name(kobj));
            else
                printk(KERN_ERR "%s failed for %s (%d) ",
                       __func__, kobject_name(kobj), error);
            dump_stack();
        } else
            kobj->state_in_sysfs = 1;

        return error;
    }
    在调用时,参数parent为NULL,且dev->kobj.kset在6.1节device_initialize函数中设置为devices_kset。
    而devices_kset对应着/sys/devices目录,因此该函数调用完成后将在/sys/devices目录下生成目录platform。

    但是这里比较奇怪的是,为什么platform目录没有对应的kset对象???

    6.2.3 device_create_sys_dev_entry函数
    在调用该函数之前,会在/sys/devices/platform/下生成属性文件。接着如果该device的设备号不为0,则创建属性文件dev,并调用本函数。
    但是,在本例中设备号devt从未设置过,显然为0,那么本函数实际并未执行。

    下列代码位于drivers/base/core.c。
    static int device_create_sys_dev_entry(struct device *dev)
    {
    struct kobject *kobj = device_to_dev_kobj(dev);
    int error = 0;
    char devt_str[15];

    if (kobj) {
    format_dev_t(devt_str, dev->devt);
    error = sysfs_create_link(kobj, &dev->kobj, devt_str);
    }

    return error;
    }
    /**
     * device_to_dev_kobj - select a /sys/dev/ directory for the device
     * @dev: device
     *
     * By default we select char/ for new entries.  Setting class->dev_obj
     * to NULL prevents an entry from being created.  class->dev_kobj must
     * be set (or cleared) before any devices are registered to the class
     * otherwise device_create_sys_dev_entry() and
     * device_remove_sys_dev_entry() will disagree about the the presence
     * of the link.
     */
    static struct kobject *device_to_dev_kobj(struct device *dev)
    {
        struct kobject *kobj;

        if (dev->class)
            kobj = dev->class->dev_kobj;
        else
            kobj = sysfs_dev_char_kobj;

        return kobj;
    }

    6.2.4 device_add_class_symlinks函数
    由于dev->class为NULL,本函数其实没做任何工作。

    下列代码位于drivers/base/core.c。
    static int device_add_class_symlinks(struct device *dev)
    {
    int error;

    if (!dev->class)
    return 0;

    error = sysfs_create_link(&dev->kobj,
    &dev->class->p->class_subsys.kobj,
    "subsystem");
    if (error)
    goto out;

    #ifdef CONFIG_SYSFS_DEPRECATED
    /* stacked class devices need a symlink in the class directory */
    if (dev->kobj.parent != &dev->class->p->class_subsys.kobj &&
    device_is_not_partition(dev)) {
    error = sysfs_create_link(&dev->class->p->class_subsys.kobj,
    &dev->kobj, dev_name(dev));
    if (error)
    goto out_subsys;
    }

    if (dev->parent && device_is_not_partition(dev)) {
    struct device *parent = dev->parent;
    char *class_name;

    /*
    * stacked class devices have the 'device' link
    * pointing to the bus device instead of the parent
    */
    while (parent->class && !parent->bus && parent->parent)
    parent = parent->parent;

    error = sysfs_create_link(&dev->kobj,
    &parent->kobj,
    "device");
    if (error)
    goto out_busid;

    class_name = make_class_name(dev->class->name,
    &dev->kobj);
    if (class_name)
    error = sysfs_create_link(&dev->parent->kobj,
    &dev->kobj, class_name);
    kfree(class_name);
    if (error)
    goto out_device;
    }
    return 0;

    out_device:
    if (dev->parent && device_is_not_partition(dev))
    sysfs_remove_link(&dev->kobj, "device");
    out_busid:
    if (dev->kobj.parent != &dev->class->p->class_subsys.kobj &&
    device_is_not_partition(dev))
    sysfs_remove_link(&dev->class->p->class_subsys.kobj,
    dev_name(dev));
    #else
    /* link in the class directory pointing to the device */
    error = sysfs_create_link(&dev->class->p->class_subsys.kobj,
    &dev->kobj, dev_name(dev));
    if (error)
    goto out_subsys;

    if (dev->parent && device_is_not_partition(dev)) {
    error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
    "device");
    if (error)
    goto out_busid;
    }
    return 0;

    out_busid:
    sysfs_remove_link(&dev->class->p->class_subsys.kobj, dev_name(dev));
    #endif

    out_subsys:
    sysfs_remove_link(&dev->kobj, "subsystem");
    out:
    return error;
    }
    6.2.5 device_add_attrs函数
    同样dev->class为空,什么都没干。
    下列代码位于drivers/base/core.c。
    static int device_add_attrs(struct device *dev)
    {
    struct class *class = dev->class;
    struct device_type *type = dev->type;
    int error;

    if (class) {
    error = device_add_attributes(dev, class->dev_attrs);
    if (error)
    return error;
    }

    if (type) {
    error = device_add_groups(dev, type->groups);
    if (error)
    goto err_remove_class_attrs;
    }

    error = device_add_groups(dev, dev->groups);
    if (error)
    goto err_remove_type_groups;

    return 0;

    err_remove_type_groups:
    if (type)
    device_remove_groups(dev, type->groups);
    err_remove_class_attrs:
    if (class)
    device_remove_attributes(dev, class->dev_attrs);

    return error;
    }
    6.2.6 bus_add_device函数
    由于dev->bus未指定,因此这个函数什么都没干。

    该函数将创建三个symlink,在sysfs中建立总线和设备间的关系。

    下列代码位于drivers/base/bus.c。
    /**
    * bus_add_device - add device to bus
    * @dev: device being added
    *
    * - Add the device to its bus's list of devices.
    * - Create link to device's bus.
    */
    int bus_add_device(struct device *dev)
    {
    struct bus_type *bus = bus_get(dev->bus);
    int error = 0;

    if (bus) {
    pr_debug("bus: '%s': add device %s ", bus->name, dev_name(dev));
    error = device_add_attrs(bus, dev);
    if (error)
    goto out_put;

    /*在sys/bus/XXX/devices下建立symlink,名字为设备名,该链接指向/sys/devices/下的某个目录*/
    error = sysfs_create_link(&bus->p->devices_kset->kobj,
    &dev->kobj, dev_name(dev));
    if (error)
    goto out_id;

    /*在sys/devices/的某个目录下建立symlink,名字为subsystem,该链接指向/sys/bus/下的某个目录*/
    error = sysfs_create_link(&dev->kobj,
    &dev->bus->p->subsys.kobj, "subsystem");
    if (error)
    goto out_subsys;

    /*在sys/devices/的某个目录下建立symlink,名字为bus,该链接指向/sys/bus/下的某个目录*/
    error = make_deprecated_bus_links(dev);
    if (error)
    goto out_deprecated;
    }
    return 0;

    out_deprecated:
    sysfs_remove_link(&dev->kobj, "subsystem");
    out_subsys:
    sysfs_remove_link(&bus->p->devices_kset->kobj, dev_name(dev));
    out_id:
    device_remove_attrs(bus, dev);
    out_put:
    bus_put(dev->bus);
    return error;
    }

    6.2.7 dpm_sysfs_add函数
    下列代码位于drivers/base/power/sysfs.c。
    int dpm_sysfs_add(struct device * dev)
    {
    return sysfs_create_group(&dev->kobj, &pm_attr_group);
    }

    static DEVICE_ATTR(wakeup, 0644, wake_show, wake_store);


    static struct attribute * power_attrs[] = {
        &dev_attr_wakeup.attr,
        NULL,
    };
    static struct attribute_group pm_attr_group = {
        .name    = "power",
        .attrs    = power_attrs,
    };

    该函数将在XXX目录下建立power子目录,并在该子目录下建立属性文件wakeup。

    在本例中,将在/sys/bus/platform下建立子目录power并在子目录下建立wakeup文件。
    6.2.8 device_pm_add函数
    下列代码位于drivers/base/power/main.c。
    /**
    * device_pm_add - add a device to the list of active devices
    * @dev: Device to be added to the list
    */
    void device_pm_add(struct device *dev)
    {
    pr_debug("PM: Adding info for %s:%s ",
    dev->bus ? dev->bus->name : "No Bus",
    kobject_name(&dev->kobj));
    mutex_lock(&dpm_list_mtx);
    if (dev->parent) {
    if (dev->parent->power.status >= DPM_SUSPENDING)
    dev_warn(dev, "parent %s should not be sleeping ",
    dev_name(dev->parent));
    } else if (transition_started) {
    /*
    * We refuse to register parentless devices while a PM
    * transition is in progress in order to avoid leaving them
    * unhandled down the road
    */
    dev_WARN(dev, "Parentless device registered during a PM transaction ");
    }

    list_add_tail(&dev->power.entry, &dpm_list); /*将该设备添加到链表中*/
    mutex_unlock(&dpm_list_mtx);
    }

    该函数只是将设备添加到电源管理链表中。
    6.2.9 bus_attach_device函数
    在本例中,由于bus未指定,该函数实际不做任何工作。
    下列代码位于drivers/base/bus.c。

    /**
    * bus_attach_device - add device to bus
    * @dev: device tried to attach to a driver
    *
    * - Add device to bus's list of devices.
    * - Try to attach to driver.
    */
    void bus_attach_device(struct device *dev)
    {
    struct bus_type *bus = dev->bus;
    int ret = 0;

    if (bus) {
    if (bus->p->drivers_autoprobe)
    ret = device_attach(dev); /*尝试获取驱动*/
    WARN_ON(ret < 0);
    if (ret >= 0) /*将设备挂在到总线中*/
    klist_add_tail(&dev->p->knode_bus,
    &bus->p->klist_devices);
    }
    }

    /**
     * device_attach - try to attach device to a driver.
     * @dev: device.
     *
     * Walk the list of drivers that the bus has and call
     * driver_probe_device() for each pair. If a compatible
     * pair is found, break out and return.
     *
     * Returns 1 if the device was bound to a driver;
     * 0 if no matching device was found;
     * -ENODEV if the device is not registered.
     *
     * When called for a USB interface, @dev->parent->sem must be held.
     */
    int device_attach(struct device *dev)
    {
        int ret = 0;

        down(&dev->sem);
        if (dev->driver) {    /*如果已指定驱动,即已绑定*/
            ret = device_bind_driver(dev);    /*在sysfs中建立链接关系*/
            if (ret == 0)
                ret = 1;
            else {
                dev->driver = NULL;
                ret = 0;
            }
        } else {        /*尚未绑定,尝试绑定,遍历该总线上的所有驱动*/
            ret = bus_for_each_drv(dev->bus, NULL, dev, __device_attach);
        }
        up(&dev->sem);
        return ret;
    }
    EXPORT_SYMBOL_GPL(device_attach);

    如果bus存在的话,将会调用device_attach函数进行绑定工作。该函数首先判断dev->driver,如果非0,表示该设备已经绑定了驱动,只要在sysfs中建立链接关系即可。

    为0表示没有绑定,接着调用bus_for_each_drv,注意作为参数传入的__device_attach,这是个函数,后面会调用它。

    我们来看下bus_for_each_drv:

    /**
    * bus_for_each_drv - driver iterator
    * @bus: bus we're dealing with.
    * @start: driver to start iterating on.
    * @data: data to pass to the callback.
    * @fn: function to call for each driver.
    *
    * This is nearly identical to the device iterator above.
    * We iterate over each driver that belongs to @bus, and call
    * @fn for each. If @fn returns anything but 0, we break out
    * and return it. If @start is not NULL, we use it as the head
    * of the list.
    *
    * NOTE: we don't return the driver that returns a non-zero
    * value, nor do we leave the reference count incremented for that
    * driver. If the caller needs to know that info, it must set it
    * in the callback. It must also be sure to increment the refcount
    * so it doesn't disappear before returning to the caller.
    */
    int bus_for_each_drv(struct bus_type *bus, struct device_driver *start,
    void *data, int (*fn)(struct device_driver *, void *))
    {
    struct klist_iter i;
    struct device_driver *drv;
    int error = 0;

    if (!bus)
    return -EINVAL;

    klist_iter_init_node(&bus->p->klist_drivers, &i,
    start ? &start->p->knode_bus : NULL);
    while ((drv = next_driver(&i)) && !error)
    error = fn(drv, data);
    klist_iter_exit(&i);
    return error;
    }
    EXPORT_SYMBOL_GPL(bus_for_each_drv);
    该函数将遍历总线的drivers目录下的所有驱动,也就是/sys/bus/XXX/drivers/下的目录,为该driver调用fn函数,也就是__device_attach。我们来看下:

    static int __device_attach(struct device_driver *drv, void *data)
    {
    struct device *dev = data;

    if (!driver_match_device(drv, dev)) /*进行匹配工作*/
    return 0;

    return driver_probe_device(drv, dev);
    }

    static inline int driver_match_device(struct device_driver *drv,
                          struct device *dev)
    {
        return drv->bus->match ? drv->bus->match(dev, drv) : 1;
    }

    /**
     * driver_probe_device - attempt to bind device & driver together
     * @drv: driver to bind a device to
     * @dev: device to try to bind to the driver
     *
     * This function returns -ENODEV if the device is not registered,
     * 1 if the device is bound sucessfully and 0 otherwise.
     *
     * This function must be called with @dev->sem held.  When called for a
     * USB interface, @dev->parent->sem must be held as well.
     */
    int driver_probe_device(struct device_driver *drv, struct device *dev)
    {
        int ret = 0;

        if (!device_is_registered(dev))    /*该device是否已在sysfs中*/
            return -ENODEV;

        pr_debug("bus: '%s': %s: matched device %s with driver %s ",
             drv->bus->name, __func__, dev_name(dev), drv->name);

        ret = really_probe(dev, drv);/*device已在sysfs,调用really_probe*/    

        return ret;
    }

    该函数首先调用driver_match_device函数,后者将会调用总线的match方法,如果有的话,来进行匹配工作。如果没有该方法,则返回1,表示匹配成功。
    我们这里是针对platform总线,该总线的方法将在7.6.2节中看到。

    随后,又调用了driver_probe_device函数。该函数将首先判断该device是否已在sysfs中,如果在则调用really_probe,否则返回出错。

    really_probe将会调用驱动的probe并完成绑定的工作。该函数将在7.6.2节中分析。
    6.2.10 小结
    在本例中,当device_register调用完成以后,将在/sys/devices/下建立目录platform,并在platfrom下建立属性文件uevent和子目录power,最后在power子目录下建立wakeup属性文件。

    最后以函数调用过程的总结来结束第6.2小结。

    6.3 spi主控制器的平台设备
    本节对一个特定的platform设备进行讲解,那就是spi主控制器的平台设备。

    在内核的启动阶段,platform设备将被注册进内核。我们来看下。

    下列代码位于arch/arm/mach-s3c2440/mach-smdk2440.c

    static struct resource s3c_spi0_resource[] = {
        [0] = {
            .start = S3C24XX_PA_SPI,
            .end   = S3C24XX_PA_SPI + 0x1f,
            .flags = IORESOURCE_MEM,
        },
        [1] = {
            .start = IRQ_SPI0,
            .end   = IRQ_SPI0,
            .flags = IORESOURCE_IRQ,
        }

    };

    static u64 s3c_device_spi0_dmamask = 0xffffffffUL;

    struct platform_device s3c_device_spi0 = {
        .name          = "s3c2410-spi",
        .id          = 0,
        .num_resources      = ARRAY_SIZE(s3c_spi0_resource),
        .resource      = s3c_spi0_resource,
            .dev              = {
                    .dma_mask = &s3c_device_spi0_dmamask,
                    .coherent_dma_mask = 0xffffffffUL
            }
    };

    static struct platform_device *smdk2440_devices[] __initdata = {
        &s3c_device_usb,
        &s3c_device_lcd,
        &s3c_device_wdt,
        &s3c_device_i2c0,
        &s3c_device_iis,
    &s3c_device_spi0,
    };



    static void __init smdk2440_machine_init(void)
    {
    s3c24xx_fb_set_platdata(&smdk2440_fb_info);
    s3c_i2c0_set_platdata(NULL);

    platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));
    smdk_machine_init();
    }

    在smdk2440_machine_init函数中,通过调用platform_add_devices将设备注册到内核中。接着来看下该函数。
    6.3.1 platform_add_devices
    /**
    * platform_add_devices - add a numbers of platform devices
    * @devs: array of platform devices to add
    * @num: number of platform devices in array
    */
    int platform_add_devices(struct platform_device **devs, int num)
    {
    int i, ret = 0;

    for (i = 0; i < num; i++) {
    ret = platform_device_register(devs[i]);
    if (ret) {
    while (--i >= 0)
    platform_device_unregister(devs[i]);
    break;
    }
    }

    return ret;
    }
    EXPORT_SYMBOL_GPL(platform_add_devices);

    该函数将根据devs指针数组,调用platform_device_register将platform设备逐一注册进内核。
    6.3.2  platform_device_register
    /**
    * platform_device_register - add a platform-level device
    * @pdev: platform device we're adding
    */
    int platform_device_register(struct platform_device *pdev)
    {
    device_initialize(&pdev->dev);
    return platform_device_add(pdev);
    }
    EXPORT_SYMBOL_GPL(platform_device_register);

    调用了两个函数,第一个函数在6.1节已经分析过。我们来看下第二个函数。
    6.3.2  platform_device_register
    /**
    * platform_device_add - add a platform device to device hierarchy
    * @pdev: platform device we're adding
    *
    * This is part 2 of platform_device_register(), though may be called
    * separately _iff_ pdev was allocated by platform_device_alloc().
    */
    int platform_device_add(struct platform_device *pdev)
    {
    int i, ret = 0;

    if (!pdev)
    return -EINVAL;

    if (!pdev->dev.parent)
    pdev->dev.parent = &platform_bus; /*该设备的父设备是platform设备,/sys/devices/platform*/

    pdev->dev.bus = &platform_bus_type; /*设备挂载到platform总线上*/

    if (pdev->id != -1)
    dev_set_name(&pdev->dev, "%s.%d", pdev->name, pdev->id);
    else
    dev_set_name(&pdev->dev, pdev->name);/*pdev->dev->kobj->name = pdev->name*/

    /*遍历平台设备的资源,并将资源添加到资源树中*/
    for (i = 0; i < pdev->num_resources; i++) {
    struct resource *p, *r = &pdev->resource[i];

    if (r->name == NULL)
    r->name = dev_name(&pdev->dev); /*获取dev->kobject->name*/

    p = r->parent;
    if (!p) { /*p空*/
    if (resource_type(r) == IORESOURCE_MEM)
    p = &iomem_resource;
    else if (resource_type(r) == IORESOURCE_IO)
    p = &ioport_resource;
    }

    if (p && insert_resource(p, r)) { /*将资源添加到资源树中*/
    printk(KERN_ERR
    "%s: failed to claim resource %d ",
    dev_name(&pdev->dev), i);
    ret = -EBUSY;
    goto failed;
    }
    }

    pr_debug("Registering platform device '%s'. Parent at %s ",
    dev_name(&pdev->dev), dev_name(pdev->dev.parent));

    ret = device_add(&pdev->dev); /*添加设备*/
    if (ret == 0)
    return ret;

    failed:
    while (--i >= 0) {
    struct resource *r = &pdev->resource[i];
    unsigned long type = resource_type(r);

    if (type == IORESOURCE_MEM || type == IORESOURCE_IO)
    release_resource(r);
    }

    return ret;
    }
    EXPORT_SYMBOL_GPL(platform_device_add);

    在这个函数的最后赫然出现了device_add函数。我们回忆下在6.1节中device_register的注册过程,该函数只调用了两个函数,一个是device_initialize函数,另一个就是device_add。
    本节的platform_device_register函数,首先也是调用了device_initialize,但是随后他做了一些其他的工作,最后调用了device_add。

    那么这个"其他的工作"干了些什么呢?

    首先,它将该SPI主控制对应的平台设备的父设备设为虚拟的platform设备(platform_bus),然后将该平台设备挂在至platform总线(platform_bus_type)上,这两步尤为重要,后面我们将看到。
    然后,调用了dev_set_name设置了pdev->dev-kobj.name,也就是该设备对象的名字,这里的名字为s3c2410-spi.0,这个名字将被用来建立一个目录。

    最后,将平台的相关资源添加到资源树中。这不是本篇文章讨论的重点所在,所以不做过多说明。

    在"其他的工作""干完之后,调用了device_add函数。那么后面的函数调用过程将和6.2小结的一致。

    由于“其他的工作”的原因,实际执行的过程和结果将有所区别。我们来分析下。

    6.3.3 不一样device_add调用结果
    首先,在device_add被调用之前,有若干个非常重要的条件已经被设置了。如下:

    pdev->dev->kobj.kset = devices_kset

    pdev->dev-.parent = &platform_bus

    pdev->dev.bus = &platform_bus_type

    set_up函数执行时,由于参数parent为&platform_bus,因此最后将设置pdev->dev->kobj.parent = platform_bus.kobj。平台设备对象的父对象为虚拟的platform设备。

    kobject_add函数执行时,由于参数parent的存在,将在parent对象所对应的目录下创建另一个目录。parent对象代表目录/sys/devices/下的platform,因此将在/sys/devices/platform下建立目录s3c2410-spi.0。

    device_create_file建立属性文件uevent。
    bus_add_device函数执行时,由于dev.bus 为&platform_bus_type,因此将建立三个symlink。

                /sys/devices/platform/s3c2410-spi.0下建立链接subsystem和bus,他们指向/sys/bus/platform。

               /sys/bus/platform/devices/下建立链接s3c2410-spi.0,指向/sys/devices/platform/s3c2410-spi.0。

    dpm_sysfs_add函数在/sys/devices/platform/s3c2410-spi.0下建立子目录power,并在该子目录下建立属性文件wakeup。

    执行到这里时,sysfs已将内核中新添加的SPI主控制器平台设备呈现出来了,我们来验证下。

    [root@yj423 s3c2410-spi.0]#pwd
    /sys/devices/platform/s3c2410-spi.0
    [root@yj423 s3c2410-spi.0]#ll
    lrwxrwxrwx    1 root     root             0 Jan  1 00:29 bus -> ../../../bus/platform
    lrwxrwxrwx    1 root     root             0 Jan  1 00:29 driver -> ../../../bus/platform/drivers/s3c2410-spi
    -r--r--r--    1 root     root          4096 Jan  1 00:29 modalias
    drwxr-xr-x    2 root     root             0 Jan  1 00:29 power
    drwxr-xr-x    3 root     root             0 Jan  1 00:00 spi0.0
    drwxr-xr-x    3 root     root             0 Jan  1 00:00 spi0.1
    lrwxrwxrwx    1 root     root             0 Jan  1 00:29 spi_master:spi0 -> ../../../class/spi_master/spi0
    lrwxrwxrwx    1 root     root             0 Jan  1 00:29 subsystem -> ../../../bus/platform
    -rw-r--r--    1 root     root          4096 Jan  1 00:29 uevent

    [root@yj423 devices]#pwd
    /sys/bus/platform/devices
    [root@yj423 devices]#ll s3c2410-spi.0
    lrwxrwxrwx    1 root     root             0 Jan  1 00:44 s3c2410-spi.0 -> ../../../devices/platform/s3c2410-spi.0
    通过sysfs将设备驱动的模型层次呈现在用户空间以后,将更新内核的设备模型之间的关系,这是通过修改链表的指向来完成的。

    bus_attach_device函数执行时,将设备添加到总线的设备链表中,同时也会尝试绑定驱动,不过会失败。

    接着,由于dev->parent的存在,将SPI主控制器设备添加到父设备platform虚拟设备的儿子链表中。

    7. driver举例
    我们已经介绍过platform总线的注册,也讲述了SPI主控制器设备作为平台设备的注册过程,在本节,将描述SPI主控制器的platform驱动是如何注册的。

    7.1 s3c24xx_spi_init
    下列代码位于drivers/spi/spi_s3c24xx.c。
    MODULE_ALIAS("platform:s3c2410-spi");
    static struct platform_driver s3c24xx_spi_driver = {
        .remove        = __exit_p(s3c24xx_spi_remove),
        .suspend    = s3c24xx_spi_suspend,
        .resume        = s3c24xx_spi_resume,
        .driver        = {
            .name    = "s3c2410-spi",
            .owner    = THIS_MODULE,
        },
    };

    static int __init s3c24xx_spi_init(void)
    {
    return platform_driver_probe(&s3c24xx_spi_driver, s3c24xx_spi_probe);//设备不可热插拔,所以使用该函数,而不是platform_driver_register
    }
    驱动注册通过调用platform_driver_probe来完成。
    注意:driver.name字段使用来匹配设备的,该字段必须和6.3节一开始给出的pdev.name字段相同。
    7.2  platform_driver_probe
    下列代码位于drivers/base/platform.c。
    /**
    * platform_driver_probe - register driver for non-hotpluggable device
    * @drv: platform driver structure
    * @probe: the driver probe routine, probably from an __init section
    *
    * Use this instead of platform_driver_register() when you know the device
    * is not hotpluggable and has already been registered, and you want to
    * remove its run-once probe() infrastructure from memory after the driver
    * has bound to the device.
    *
    * One typical use for this would be with drivers for controllers integrated
    * into system-on-chip processors, where the controller devices have been
    * configured as part of board setup.
    *
    * Returns zero if the driver registered and bound to a device, else returns
    * a negative error code and with the driver not registered.
    */
    int __init_or_module platform_driver_probe(struct platform_driver *drv,
    int (*probe)(struct platform_device *))
    {
    int retval, code;

    /* temporary section violation during probe() */
    drv->probe = probe;
    retval = code = platform_driver_register(drv); /*注册platform驱动*/

    /* Fixup that section violation, being paranoid about code scanning
    * the list of drivers in order to probe new devices. Check to see
    * if the probe was successful, and make sure any forced probes of
    * new devices fail.
    */
    spin_lock(&platform_bus_type.p->klist_drivers.k_lock);
    drv->probe = NULL;
    if (code == 0 && list_empty(&drv->driver.p->klist_devices.k_list))
    retval = -ENODEV;
    drv->driver.probe = platform_drv_probe_fail;
    spin_unlock(&platform_bus_type.p->klist_drivers.k_lock);

    if (code != retval)
    platform_driver_unregister(drv);
    return retval;
    }
    EXPORT_SYMBOL_GPL(platform_driver_probe);
    这里的重点是platform_driver_register,由它来完成了platform驱动的注册。
    7.3 platform_driver_register
    /**
    * platform_driver_register
    * @drv: platform driver structure
    */
    int platform_driver_register(struct platform_driver *drv)
    {
    drv->driver.bus = &platform_bus_type;
    if (drv->probe)
    drv->driver.probe = platform_drv_probe;
    if (drv->remove)
    drv->driver.remove = platform_drv_remove;
    if (drv->shutdown)
    drv->driver.shutdown = platform_drv_shutdown;
    if (drv->suspend)
    drv->driver.suspend = platform_drv_suspend;
    if (drv->resume)
    drv->driver.resume = platform_drv_resume;
    return driver_register(&drv->driver); /*驱动注册*/
    }
    EXPORT_SYMBOL_GPL(platform_driver_register);

    driver_register函数就是driver注册的核心函数。需要注意的是,在调用函数之前,将该驱动所挂载的总线设置为platform总线(platform_bus_type)。
    7.4 driver_register
    下列代码位于drivers/base/driver.c。
    /**
    * driver_register - register driver with bus
    * @drv: driver to register
    *
    * We pass off most of the work to the bus_add_driver() call,
    * since most of the things we have to do deal with the bus
    * structures.
    */
    int driver_register(struct device_driver *drv)
    {
    int ret;
    struct device_driver *other;

    BUG_ON(!drv->bus->p);

    if ((drv->bus->probe && drv->probe) ||
    (drv->bus->remove && drv->remove) ||
    (drv->bus->shutdown && drv->shutdown))
    printk(KERN_WARNING "Driver '%s' needs updating - please use "
    "bus_type methods ", drv->name);

    other = driver_find(drv->name, drv->bus);/*用驱动名字来搜索在该总线上驱动是否已经存在*/
    if (other) { /*存在则报错*/
    put_driver(other);
    printk(KERN_ERR "Error: Driver '%s' is already registered, "
    "aborting... ", drv->name);
    return -EEXIST;
    }

    ret = bus_add_driver(drv); /*将驱动添加到一个总线中*/
    if (ret)
    return ret;
    ret = driver_add_groups(drv, drv->groups); /*建立属性组文件*/
    if (ret)
    bus_remove_driver(drv);
    return ret;
    }
    EXPORT_SYMBOL_GPL(driver_register);
    这里主要调用两个函数driver_find和bus_add_driver。前者将通过总线来搜索该驱动是否存在,后者将添加驱动到总线中。
    接下来就分析这两个函数。
    7.5 driver_find
    下列代码位于drivers/base/driver.c。
    /**
    * driver_find - locate driver on a bus by its name.
    * @name: name of the driver.
    * @bus: bus to scan for the driver.
    *
    * Call kset_find_obj() to iterate over list of drivers on
    * a bus to find driver by name. Return driver if found.
    *
    * Note that kset_find_obj increments driver's reference count.
    */
    struct device_driver *driver_find(const char *name, struct bus_type *bus)
    {
    struct kobject *k = kset_find_obj(bus->p->drivers_kset, name);
    struct driver_private *priv;

    if (k) {
    priv = to_driver(k);
    return priv->driver;
    }
    return NULL;
    }
    EXPORT_SYMBOL_GPL(driver_find);

    /**
    * kset_find_obj - search for object in kset.
    * @kset: kset we're looking in.
    * @name: object's name.
    *
    * Lock kset via @kset->subsys, and iterate over @kset->list,
    * looking for a matching kobject. If matching object is found
    * take a reference and return the object.
    */
    struct kobject *kset_find_obj(struct kset *kset, const char *name)
    {
    struct kobject *k;
    struct kobject *ret = NULL;

    spin_lock(&kset->list_lock);
    list_for_each_entry(k, &kset->list, entry) {
    if (kobject_name(k) && !strcmp(kobject_name(k), name)) {
    ret = kobject_get(k);
    break;
    }
    }
    spin_unlock(&kset->list_lock);
    return ret;
    }
    这里调用了kset_find_obj函数,传入的实参bus->p->drivers_kset,它对应的就是/sys/bus/platform/下的drivers目录,然后通过链表,它将搜索该目录下的所有文件,来寻找是否有名为s3c2410-spi的文件。还记得吗? kobject就是一个文件对象。如果没有找到将返回NULL,接着将调用bus_add_driver把驱动注册进内核。
    7.6 bus_add_driver
    下列代码位于drivers/base/bus.c

    /**
    * bus_add_driver - Add a driver to the bus.
    * @drv: driver.
    */
    int bus_add_driver(struct device_driver *drv)
    {
    struct bus_type *bus;
    struct driver_private *priv;
    int error = 0;

    bus = bus_get(drv->bus); /*增加引用计数获取bus_type*/
    if (!bus)
    return -EINVAL;

    pr_debug("bus: '%s': add driver %s ", bus->name, drv->name);

    priv = kzalloc(sizeof(*priv), GFP_KERNEL); /*分配driver_private结构体*/
    if (!priv) {
    error = -ENOMEM;
    goto out_put_bus;
    }
    /*初始化内核链表*/
    klist_init(&priv->klist_devices, NULL, NULL);
    /*相互保存*/
    priv->driver = drv;
    drv->p = priv;
    /*设置该kobj属于那个kset*/
    priv->kobj.kset = bus->p->drivers_kset;
    error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL, /*parent=NULL*/
    "%s", drv->name); /*执行完以后,会在bus/总线名/drivers/下建立名为drv->name的目录*/
    if (error)
    goto out_unregister;

    if (drv->bus->p->drivers_autoprobe) {
    error = driver_attach(drv); /*尝试绑定驱动和设备*/
    if (error)
    goto out_unregister;
    }
    /*添加该驱动到bus的内核链表中*/
    klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);
    module_add_driver(drv->owner, drv);/*?????????*/

    /*创建属性,在bus/总线名/drivers/驱动名/下建立文件uevent*/
    error = driver_create_file(drv, &driver_attr_uevent);
    if (error) {
    printk(KERN_ERR "%s: uevent attr (%s) failed ",
    __func__, drv->name);
    }
    /*利用bus->drv_attrs创建属性,位于bus/总线名/drivers/驱动名/*/
    error = driver_add_attrs(bus, drv);
    if (error) {
    /* How the hell do we get out of this pickle? Give up */
    printk(KERN_ERR "%s: driver_add_attrs(%s) failed ",
    __func__, drv->name);
    }
    /*创建属性,在bus/总线名/drivers/驱动名/下建立文件bind和unbind*/
    error = add_bind_files(drv);
    if (error) {
    /* Ditto */
    printk(KERN_ERR "%s: add_bind_files(%s) failed ",
    __func__, drv->name);
    }
    /*通知用户空间???*/
    kobject_uevent(&priv->kobj, KOBJ_ADD);
    return 0;
    out_unregister:
    kfree(drv->p);
    drv->p = NULL;
    kobject_put(&priv->kobj);
    out_put_bus:
    bus_put(bus);
    return error;
    }
    在设置driver的kobj.kset为drivers目录所对应的kset之后,调用了kobject_init_and_add,我们来看下。
    7.6.1 kobject_init_and_add
    下列代码位于lib/kobject.c。
    /**
    * kobject_init_and_add - initialize a kobject structure and add it to the kobject hierarchy
    * @kobj: pointer to the kobject to initialize
    * @ktype: pointer to the ktype for this kobject.
    * @parent: pointer to the parent of this kobject.
    * @fmt: the name of the kobject.
    *
    * This function combines the call to kobject_init() and
    * kobject_add(). The same type of error handling after a call to
    * kobject_add() and kobject lifetime rules are the same here.
    */
    int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype,
    struct kobject *parent, const char *fmt, ...)
    {
    va_list args;
    int retval;

    kobject_init(kobj, ktype);

    va_start(args, fmt);
    retval = kobject_add_varg(kobj, parent, fmt, args);
    va_end(args);

    return retval;
    }
    EXPORT_SYMBOL_GPL(kobject_init_and_add);
    该函数中调用了两个函数,这两个函数分别在6.1.2和6.2.2中讲述过,这里不再赘述。
    调用该函数时由于parent为NULL,但kobj.kset为drivers目录,所以将在/sys/bus/platform/drivers/下建立目录,名为s3c2410-spi。

    我们来验证下:

    [root@yj423 s3c2410-spi]#pwd
    /sys/bus/platform/drivers/s3c2410-spi
    接着由于drivers_autoprobe在bus_register执行的时候已经置1,将调用driver_attach。

    7.6.2 driver_attach
    下列代码位于drivers/base/dd.c。
    /**
    * driver_attach - try to bind driver to devices.
    * @drv: driver.
    *
    * Walk the list of devices that the bus has on it and try to
    * match the driver with each one. If driver_probe_device()
    * returns 0 and the @dev->driver is set, we've found a
    * compatible pair.
    */
    int driver_attach(struct device_driver *drv)
    {
    return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
    }
    EXPORT_SYMBOL_GPL(driver_attach);
    该函数将调用bus_for_each_dev来寻找总线上的每个设备,这里的总线即为platform总线,然后尝试绑定设备。
    这里需要注意的是最后一个参数__driver_attach,这是一个函数名,后面将会调用它。

    /**
    * bus_for_each_dev - device iterator.
    * @bus: bus type.
    * @start: device to start iterating from.
    * @data: data for the callback.
    * @fn: function to be called for each device.
    *
    * Iterate over @bus's list of devices, and call @fn for each,
    * passing it @data. If @start is not NULL, we use that device to
    * begin iterating from.
    *
    * We check the return of @fn each time. If it returns anything
    * other than 0, we break out and return that value.
    *
    * NOTE: The device that returns a non-zero value is not retained
    * in any way, nor is its refcount incremented. If the caller needs
    * to retain this data, it should do, and increment the reference
    * count in the supplied callback.
    */
    int bus_for_each_dev(struct bus_type *bus, struct device *start,
    void *data, int (*fn)(struct device *, void *))
    {
    struct klist_iter i;
    struct device *dev;
    int error = 0;

    if (!bus)
    return -EINVAL;

    klist_iter_init_node(&bus->p->klist_devices, &i,
    (start ? &start->p->knode_bus : NULL));
    while ((dev = next_device(&i)) && !error)
    error = fn(dev, data);
    klist_iter_exit(&i);
    return error;
    }
    EXPORT_SYMBOL_GPL(bus_for_each_dev);
    通过klist将遍历该总线上的所有设备,并为其调用__driver_attach函数。
    static int __driver_attach(struct device *dev, void *data)
    {
    struct device_driver *drv = data;

    /*
    * Lock device and try to bind to it. We drop the error
    * here and always return 0, because we need to keep trying
    * to bind to devices and some drivers will return an error
    * simply if it didn't support the device.
    *
    * driver_probe_device() will spit a warning if there
    * is an error.
    */

    if (!driver_match_device(drv, dev))
    return 0;

    if (dev->parent) /* Needed for USB */
    down(&dev->parent->sem);
    down(&dev->sem);
    if (!dev->driver)
    driver_probe_device(drv, dev);
    up(&dev->sem);
    if (dev->parent)
    up(&dev->parent->sem);

    return 0;
    }
    首先调用了driver_match_device函数,该函数进会进行匹配,如果匹配成功将返回1。我们看下这个函数:
    static inline int driver_match_device(struct device_driver *drv,
    struct device *dev)
    {
    return drv->bus->match ? drv->bus->match(dev, drv) : 1;
    }

    这里直接调用了platform总线的match方法,我们来看下这个方法。
    /**
    * platform_match - bind platform device to platform driver.
    * @dev: device.
    * @drv: driver.
    *
    * Platform device IDs are assumed to be encoded like this:
    * "<name><instance>", where <name> is a short description of the type of
    * device, like "pci" or "floppy", and <instance> is the enumerated
    * instance of the device, like '0' or '42'. Driver IDs are simply
    * "<name>". So, extract the <name> from the platform_device structure,
    * and compare it against the name of the driver. Return whether they match
    * or not.
    */
    static int platform_match(struct device *dev, struct device_driver *drv)
    {
    struct platform_device *pdev = to_platform_device(dev);
    struct platform_driver *pdrv = to_platform_driver(drv);

    /* match against the id table first */
    if (pdrv->id_table)
    return platform_match_id(pdrv->id_table, pdev) != NULL;

    /* fall-back to driver name match */
    return (strcmp(pdev->name, drv->name) == 0);
    }
    该方法的核心其实就是使用stcmp进行字符匹配,判断pdev->name和drv->name是否相等。
    在本例中两者同为s3c2410-spi。因此匹配完成,返回1。

    返回后,由于dev->driver为NULL,将调用driver_probe_device函数。我们来看下:

    /**
    * driver_probe_device - attempt to bind device & driver together
    * @drv: driver to bind a device to
    * @dev: device to try to bind to the driver
    *
    * This function returns -ENODEV if the device is not registered,
    * 1 if the device is bound sucessfully and 0 otherwise.
    *
    * This function must be called with @dev->sem held. When called for a
    * USB interface, @dev->parent->sem must be held as well.
    */
    int driver_probe_device(struct device_driver *drv, struct device *dev)
    {
    int ret = 0;

    if (!device_is_registered(dev))
    return -ENODEV;

    pr_debug("bus: '%s': %s: matched device %s with driver %s ",
    drv->bus->name, __func__, dev_name(dev), drv->name);

    ret = really_probe(dev, drv);

    return ret;
    }
    static inline int device_is_registered(struct device *dev)
    {
        return dev->kobj.state_in_sysfs;
    }
    该函数将调用really_probe来绑定设备和它的驱动。
    static int really_probe(struct device *dev, struct device_driver *drv)
    {
    int ret = 0;

    atomic_inc(&probe_count);
    pr_debug("bus: '%s': %s: probing driver %s with device %s ",
    drv->bus->name, __func__, drv->name, dev_name(dev));
    WARN_ON(!list_empty(&dev->devres_head));

    dev->driver = drv;
    if (driver_sysfs_add(dev)) { /*创建两个symlink,更新sysfs*/
    printk(KERN_ERR "%s: driver_sysfs_add(%s) failed ",
    __func__, dev_name(dev));
    goto probe_failed;
    }

    if (dev->bus->probe) {
    ret = dev->bus->probe(dev);/*调用总线的probe方法*/
    if (ret)
    goto probe_failed;
    } else if (drv->probe) {
    ret = drv->probe(dev); /*调用驱动的probe方法*/
    if (ret)
    goto probe_failed;
    }

    driver_bound(dev); /*绑定设备和驱动*/
    ret = 1;
    pr_debug("bus: '%s': %s: bound device %s to driver %s ",
    drv->bus->name, __func__, dev_name(dev), drv->name);
    goto done;

    probe_failed:
    devres_release_all(dev);
    driver_sysfs_remove(dev);
    dev->driver = NULL;

    if (ret != -ENODEV && ret != -ENXIO) {
    /* driver matched but the probe failed */
    printk(KERN_WARNING
    "%s: probe of %s failed with error %d ",
    drv->name, dev_name(dev), ret);
    }
    /*
    * Ignore errors returned by ->probe so that the next driver can try
    * its luck.
    */
    ret = 0;
    done:
    atomic_dec(&probe_count);
    wake_up(&probe_waitqueue);
    return ret;
    }

    在这个函数中调用4个函数。

    第一个函数driver_sysfs_add将更新sysfs。

    static int driver_sysfs_add(struct device *dev)
    {
    int ret;
    /* 在/sys/bus/XXX/drivers/XXX目录下建立symlink,链接名为kobj->name,
    链接指向/sys/devices/platform/XXX */
    ret = sysfs_create_link(&dev->driver->p->kobj, &dev->kobj,
    kobject_name(&dev->kobj));
    if (ret == 0) {
    /* 在/sys/devices/platform/XXX/下建立symlink,链接名为driver,
    指向/sys/bus/xxx/drivers目录下的某个目录*/
    ret = sysfs_create_link(&dev->kobj, &dev->driver->p->kobj,
    "driver");
    if (ret)
    sysfs_remove_link(&dev->driver->p->kobj,
    kobject_name(&dev->kobj));
    }
    return ret;
    }

    执行完以后,建立了两个链接。
    在/sys/bus/platform/drivers/s3c2410-spi下建立链接,指向/sys/devices/platform/s3c2410-spi.0
    在/sys/devices/platform/s3c2410-spi.0下建立链接,指向/sys/devices/platform/s3c2410-spi.0。
    这样就在用户空间呈现出驱动和设备的关系了。我们来验证下。

    [root@yj423 s3c2410-spi]#pwd
    /sys/bus/platform/drivers/s3c2410-spi
    [root@yj423 s3c2410-spi]#ll s3c2410-spi.0
    lrwxrwxrwx    1 root     root             0 Jan  1 02:28 s3c2410-spi.0 -> ../../../../devices/platform/s3c2410-spi.0
    [root@yj423 s3c2410-spi.0]#pwd
    /sys/devices/platform/s3c2410-spi.0
    [root@yj423 s3c2410-spi.0]#ll driver
    lrwxrwxrwx    1 root     root             0 Jan  1 02:26 driver -> ../../../bus/platform/drivers/s3c2410-spi

    第2个函数执行总线的probe方法,由于platform总线没有提供probe方法,因此不执行。

    第3个函数执行驱动的probe方法,驱动提供了probe,因此调用它,该函数的细节超过了本文的讨论内容,所以略过。

    第4个函数执行driver_bound,用来绑定设备和驱动,来看下这个函数。

    static void driver_bound(struct device *dev)
    {
    if (klist_node_attached(&dev->p->knode_driver)) {
    printk(KERN_WARNING "%s: device %s already bound ",
    __func__, kobject_name(&dev->kobj));
    return;
    }

    pr_debug("driver: '%s': %s: bound to device '%s' ", dev_name(dev),
    __func__, dev->driver->name);

    if (dev->bus)
    blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
    BUS_NOTIFY_BOUND_DRIVER, dev);

    klist_add_tail(&dev->p->knode_driver, &dev->driver->p->klist_devices);
    }
    其实,所谓的绑定,就是将设备的驱动节点添加到驱动支持的设备链表中。
    至此,通过内核链表,这个platform device 和platform driver 已经绑定完成,将继续遍历内核链表尝试匹配和绑定,直到链表结束。

    在driver_attach执行完毕以后,bus_add_driver函数还有些剩余工作要完成。

    首先,将驱动添加到总线的驱动列表中。
    接着,如果定义了驱动属性文件,则创建。
    最后,在/sys/bus/platform/drivers/s3c2410-spi/下建立属性文件uevent,并在同一目录下建立文件bind和unbind。

    我们来验证下:

    [root@yj423 s3c2410-spi]#pwd
    /sys/bus/platform/drivers/s3c2410-spi
    [root@yj423 s3c2410-spi]#ls
    bind           s3c2410-spi.0  uevent         unbind
    7.7 小结
    在本节中,我们看到了platform driver是如何注册到内核中,在注册过程中,通过更新了sysfs,向用户空间展示总线,设备和驱动之间的关系。

    同时,还更新了链表的指向,在内核中体现了同样的关系。

    最后以platform driver的注册过程结束本章。

    8. sysfs底层函数
    下面讲述的内容将基于VFS,有关VFS的基本内容超过本文的范围,请参考<<深入理解Linux内核>>一书的第12章。
    在前面讲述的过程中,我们知道设备驱动模型是如何通过kobject将总线,设备和驱动间的层次关系在用户空间呈现出来的。事实上,就是通过目录,文件和symlink来呈现相互之间的关系。在前面的叙述中,我们并没有对目录,文件和symlink的创建进行 讲解,本章就对这些底层函数进行讲解。在讲解这些函数之前,我们先来看下,sysfs文件系统是如何注册的。

    8.1 注册sysfs文件系统
    sysfs文件系统的注册是调用sysfs_init函数来完成的,该函数在内核启动阶段被调用,我们来看下大致函数调用流程,这里不作分析。
    start_kernel( ) ->  vfs_caches_init( ) ->  mnt_init( ) ->  mnt_init( ) ->  sysfs_init( )。

    int __init sysfs_init(void)
    {
    int err = -ENOMEM;
    /*建立cache,名字为sysfs_dir_cache*/
    sysfs_dir_cachep = kmem_cache_create("sysfs_dir_cache",
    sizeof(struct sysfs_dirent),
    0, 0, NULL);
    if (!sysfs_dir_cachep)
    goto out;

    err = sysfs_inode_init();
    if (err)
    goto out_err;
    /*注册文件系统*/
    err = register_filesystem(&sysfs_fs_type);
    if (!err) {
    /*注册成功,加载文件系统*/
    sysfs_mount = kern_mount(&sysfs_fs_type);
    if (IS_ERR(sysfs_mount)) {
    printk(KERN_ERR "sysfs: could not mount! ");
    err = PTR_ERR(sysfs_mount);
    sysfs_mount = NULL;
    unregister_filesystem(&sysfs_fs_type);
    goto out_err;
    }
    } else
    goto out_err;
    out:
    return err;
    out_err:
    kmem_cache_destroy(sysfs_dir_cachep);
    sysfs_dir_cachep = NULL;
    goto out;
    }

    static struct file_system_type sysfs_fs_type = {
        .name        = "sysfs",
        .get_sb        = sysfs_get_sb,
        .kill_sb    = kill_anon_super,
    };

    8.1.1 register_filesystem
    下列代码位于fs/filesystems.c。
    /**
    * register_filesystem - register a new filesystem
    * @fs: the file system structure
    *
    * Adds the file system passed to the list of file systems the kernel
    * is aware of for mount and other syscalls. Returns 0 on success,
    * or a negative errno code on an error.
    *
    * The &struct file_system_type that is passed is linked into the kernel
    * structures and must not be freed until the file system has been
    * unregistered.
    */

    int register_filesystem(struct file_system_type * fs)
    {
    int res = 0;
    struct file_system_type ** p;

    BUG_ON(strchr(fs->name, '.'));
    if (fs->next)
    return -EBUSY;
    INIT_LIST_HEAD(&fs->fs_supers);
    write_lock(&file_systems_lock);
    p = find_filesystem(fs->name, strlen(fs->name)); /*查找要住的文件是同是否存在,返回位置*/
    if (*p)
    res = -EBUSY; /*该文件系统已存在,返回error*/
    else
    *p = fs; /*将新的文件系统加入到链表中*/
    write_unlock(&file_systems_lock);
    return res;
    }
    static struct file_system_type **find_filesystem(const char *name, unsigned len)
    {
    struct file_system_type **p;
    for (p=&file_systems; *p; p=&(*p)->next)
    if (strlen((*p)->name) == len &&
    strncmp((*p)->name, name, len) == 0)
    break;
    return p;
    }
    该函数将调用函数file_system_type,此函数根据name字段(sysfs)来查找要注册的文件系统是否已经存在。
    如果不存在,表示还未注册,则将新的fs添加到链表中,链表的第一项为全局变量file_systems。

    该全局变量为单项链表,所有已注册的文件系统都被插入到这个链表当中。

    8.1.2 kern_mount函数
    下列代码位于include/linux/fs.h

    #define kern_mount(type) kern_mount_data(type, NULL)
    下列代码位于fs/sysfs/mount.c
    struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
    {
        return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
    }

    EXPORT_SYMBOL_GPL(kern_mount_data);
    kern_mount实际上最后是调用了vfs_kern_mount函数。我们来看下:

    struct vfsmount *
    vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
    {
    struct vfsmount *mnt;
    char *secdata = NULL;
    int error;

    if (!type)
    return ERR_PTR(-ENODEV);

    error = -ENOMEM;
    mnt = alloc_vfsmnt(name); /*分配struct vfsmount*/
    if (!mnt)
    goto out;

    if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
    secdata = alloc_secdata();
    if (!secdata)
    goto out_mnt;

    error = security_sb_copy_data(data, secdata);
    if (error)
    goto out_free_secdata;
    }
    /*get_sb方法,分配superblock对象,并初始化*/
    error = type->get_sb(type, flags, name, data, mnt);
    if (error < 0)
    goto out_free_secdata;
    BUG_ON(!mnt->mnt_sb);

    error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
    if (error)
    goto out_sb;

    mnt->mnt_mountpoint = mnt->mnt_root;/*设置挂载点的dentry*/
    mnt->mnt_parent = mnt; /*设置所挂载的fs为自己本身*/
    up_write(&mnt->mnt_sb->s_umount);
    free_secdata(secdata);
    return mnt;
    out_sb:
    dput(mnt->mnt_root);
    deactivate_locked_super(mnt->mnt_sb);
    out_free_secdata:
    free_secdata(secdata);
    out_mnt:
    free_vfsmnt(mnt);
    out:
    return ERR_PTR(error);
    }

    该函数在首先调用alloc_vfsmnt来分配struct vfsmount结构,并做了一些初试化工作。
    下列函数位于fs/super.c
    struct vfsmount *alloc_vfsmnt(const char *name)
    {
    struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
    if (mnt) {
    int err;

    err = mnt_alloc_id(mnt); /*设置mnt->mnt_id*/
    if (err)
    goto out_free_cache;

    if (name) {
    mnt->mnt_devname = kstrdup(name, GFP_KERNEL); /*拷贝name,并赋值*/
    if (!mnt->mnt_devname)
    goto out_free_id;
    }

    atomic_set(&mnt->mnt_count, 1);
    INIT_LIST_HEAD(&mnt->mnt_hash);
    INIT_LIST_HEAD(&mnt->mnt_child);
    INIT_LIST_HEAD(&mnt->mnt_mounts);
    INIT_LIST_HEAD(&mnt->mnt_list);
    INIT_LIST_HEAD(&mnt->mnt_expire);
    INIT_LIST_HEAD(&mnt->mnt_share);
    INIT_LIST_HEAD(&mnt->mnt_slave_list);
    INIT_LIST_HEAD(&mnt->mnt_slave);
    atomic_set(&mnt->__mnt_writers, 0);
    }
    return mnt;

    out_free_id:
    mnt_free_id(mnt);
    out_free_cache:
    kmem_cache_free(mnt_cache, mnt);
    return NULL;
    }
    分配好结构体以后,由于参数data为NULL,将直接调用文件系统类型提供的get_sb方法,该方法就是函数sysfs_get_sb。我们来看下:
    下列函数位于fs/sysfs/mount.c。
    static int sysfs_get_sb(struct file_system_type *fs_type,
    int flags, const char *dev_name, void *data, struct vfsmount *mnt)
    {
    return get_sb_single(fs_type, flags, data, sysfs_fill_super, mnt);
    }
    这里直接调用了get_sb_single函数,注意这里的第4个实参sysfs_fill_super,该参数是函数名,后面将会调用该函数。
    该函数将分配sysfs文件系统的superblock,获取文件系统根目录的inode和dentry。

    该函数的执行过程相当复杂,在下一节单独讲述。

    8.2 get_sb_single函数
    下列函数位于fs/sysfs/mount.c。

    int get_sb_single(struct file_system_type *fs_type,
    int flags, void *data,
    int (*fill_super)(struct super_block *, void *, int),
    struct vfsmount *mnt)
    {
    struct super_block *s;
    int error;
    /*查找或者创建super_block*/
    s = sget(fs_type, compare_single, set_anon_super, NULL);
    if (IS_ERR(s))
    return PTR_ERR(s);
    if (!s->s_root) { /*没有根目录dentry*/
    s->s_flags = flags;
    /*获取root( / )的 inode和dentry*/
    error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
    if (error) {
    deactivate_locked_super(s);
    return error;
    }
    s->s_flags |= MS_ACTIVE;
    }
    do_remount_sb(s, flags, data, 0);
    simple_set_mnt(mnt, s); /*设置vfsmount的superblock和根dentry*/
    return 0;
    }

    EXPORT_SYMBOL(get_sb_single);
    8.2.1 sget函数
    首先调用了sget函数来查找是否
    下列函数位于fs/super.c。
    /**
    * sget - find or create a superblock
    * @type: filesystem type superblock should belong to
    * @test: comparison callback
    * @set: setup callback
    * @data: argument to each of them
    */
    struct super_block *sget(struct file_system_type *type,
    int (*test)(struct super_block *,void *),
    int (*set)(struct super_block *,void *),
    void *data)
    {
    struct super_block *s = NULL;
    struct super_block *old;
    int err;

    retry:
    spin_lock(&sb_lock);
    if (test) {
    /*遍历所有属于该文件系统的super_block*/
    list_for_each_entry(old, &type->fs_supers, s_instances) {
    if (!test(old, data))
    continue;
    if (!grab_super(old))
    goto retry;
    if (s) {
    up_write(&s->s_umount);
    destroy_super(s);
    }
    return old;
    }
    }
    if (!s) {
    spin_unlock(&sb_lock);
    s = alloc_super(type); /*创建新的super_block并初始化*/
    if (!s)
    return ERR_PTR(-ENOMEM);
    goto retry;
    }

    err = set(s, data); /*设置s->s_dev */
    if (err) {
    spin_unlock(&sb_lock);
    up_write(&s->s_umount);
    destroy_super(s);
    return ERR_PTR(err);
    }
    s->s_type = type;
    strlcpy(s->s_id, type->name, sizeof(s->s_id)); /*拷贝name*/
    list_add_tail(&s->s_list, &super_blocks); /*将新的super_block添加到链表头super_blocks中*/
    list_add(&s->s_instances, &type->fs_supers); /*将新的super_block添加到相应的文件系统类型的链表中*/
    spin_unlock(&sb_lock);
    get_filesystem(type);
    return s;
    }

    EXPORT_SYMBOL(sget);
    该函数将遍历属于sysfs文件系统的所有superblock,本例中由于之前没有任何superblock创建,遍历立即结束。
    然后调用alloc_super函数来创建新的struct super_block。

    下列函数位于fs/super.c。
    /**
    * alloc_super - create new superblock
    * @type: filesystem type superblock should belong to
    *
    * Allocates and initializes a new &struct super_block. alloc_super()
    * returns a pointer new superblock or %NULL if allocation had failed.
    */
    static struct super_block *alloc_super(struct file_system_type *type)
    {
    struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);/*分配并清0super_block*/
    static struct super_operations default_op;

    if (s) {
    if (security_sb_alloc(s)) {
    kfree(s);
    s = NULL;
    goto out;
    }
    INIT_LIST_HEAD(&s->s_dirty);
    INIT_LIST_HEAD(&s->s_io);
    INIT_LIST_HEAD(&s->s_more_io);
    INIT_LIST_HEAD(&s->s_files);
    INIT_LIST_HEAD(&s->s_instances);
    INIT_HLIST_HEAD(&s->s_anon);
    INIT_LIST_HEAD(&s->s_inodes);
    INIT_LIST_HEAD(&s->s_dentry_lru);
    INIT_LIST_HEAD(&s->s_async_list);
    init_rwsem(&s->s_umount);
    mutex_init(&s->s_lock);
    lockdep_set_class(&s->s_umount, &type->s_umount_key);
    /*
    * The locking rules for s_lock are up to the
    * filesystem. For example ext3fs has different
    * lock ordering than usbfs:
    */
    lockdep_set_class(&s->s_lock, &type->s_lock_key);
    /*
    * sget() can have s_umount recursion.
    *
    * When it cannot find a suitable sb, it allocates a new
    * one (this one), and tries again to find a suitable old
    * one.
    *
    * In case that succeeds, it will acquire the s_umount
    * lock of the old one. Since these are clearly distrinct
    * locks, and this object isn't exposed yet, there's no
    * risk of deadlocks.
    *
    * Annotate this by putting this lock in a different
    * subclass.
    */
    down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
    s->s_count = S_BIAS;
    atomic_set(&s->s_active, 1);
    mutex_init(&s->s_vfs_rename_mutex);
    mutex_init(&s->s_dquot.dqio_mutex);
    mutex_init(&s->s_dquot.dqonoff_mutex);
    init_rwsem(&s->s_dquot.dqptr_sem);
    init_waitqueue_head(&s->s_wait_unfrozen);
    s->s_maxbytes = MAX_NON_LFS;
    s->dq_op = sb_dquot_ops;
    s->s_qcop = sb_quotactl_ops;
    s->s_op = &default_op;
    s->s_time_gran = 1000000000;
    }
    out:
    return s;
    }
    分配完以后,调用作为参数传入的函数指针set,也就是set_anon_super函数,该函数用来设置s->s_dev。
    下列函数位于fs/super.c。
    int set_anon_super(struct super_block *s, void *data)
    {
    int dev;
    int error;

    retry:
    if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)/*分配ID号*/
    return -ENOMEM;
    spin_lock(&unnamed_dev_lock);
    error = ida_get_new(&unnamed_dev_ida, &dev);/*获取ID号,保存在dev中*/
    spin_unlock(&unnamed_dev_lock);
    if (error == -EAGAIN)
    /* We raced and lost with another CPU. */
    goto retry;
    else if (error)
    return -EAGAIN;

    if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
    spin_lock(&unnamed_dev_lock);
    ida_remove(&unnamed_dev_ida, dev);
    spin_unlock(&unnamed_dev_lock);
    return -EMFILE;
    }
    s->s_dev = MKDEV(0, dev & MINORMASK); /*构建设备号*/
    return 0;
    }
    8.2.2  sysfs_fill_super函数
    分配了super_block之后,将判断该super_block是否有root dentry。本例中,显然没有。然后调用形参fill_super指向的函数,也就是sysfs_fill_super函数。

    下列函数位于fs/sysfs/mount.c。
    struct super_block * sysfs_sb = NULL;

    static int sysfs_fill_super(struct super_block *sb, void *data, int silent)
    {
    struct inode *inode;
    struct dentry *root;

    sb->s_blocksize = PAGE_CACHE_SIZE; /*4KB*/
    sb->s_blocksize_bits = PAGE_CACHE_SHIFT; /*4KB*/
    sb->s_magic = SYSFS_MAGIC; /*0x62656572*/
    sb->s_op = &sysfs_ops;
    sb->s_time_gran = 1;
    sysfs_sb = sb; /*sysfs_sb即为sysfs的super_block*/

    /* get root inode, initialize and unlock it */
    mutex_lock(&sysfs_mutex);
    inode = sysfs_get_inode(&sysfs_root); /*sysfs_root即为sysfs所在的根目录的dirent,,获取inode*/
    mutex_unlock(&sysfs_mutex);
    if (!inode) {
    pr_debug("sysfs: could not get root inode ");
    return -ENOMEM;
    }

    /* instantiate and link root dentry */
    root = d_alloc_root(inode); /*为获得的根inode分配root(/) dentry*/
    if (!root) {
    pr_debug("%s: could not get root dentry! ",__func__);
    iput(inode);
    return -ENOMEM;
    }
    root->d_fsdata = &sysfs_root;
    sb->s_root = root; /*保存superblock的根dentry*/
    return 0;
    }

    struct sysfs_dirent sysfs_root = {    /*sysfs_root即为sysfs所在的根目录的dirent*/
        .s_name        = "",
        .s_count    = ATOMIC_INIT(1),
        .s_flags    = SYSFS_DIR,
        .s_mode        = S_IFDIR | S_IRWXU | S_IRUGO | S_IXUGO,
        .s_ino        = 1,
    };

    在设置了一些字段后,设置了sysfs_sb这个全局变量,该全局变量表示的就是sysfs的super_block。
    随后,调用了sysfs_get_inode函数,来获取sysfs的根目录的dirent。该函数的参数sysfs_root为全局变量,表示sysfs的根目录的sysfs_dirent。

    我们看些这个sysfs_dirent数据结构:
    /*
    * sysfs_dirent - the building block of sysfs hierarchy. Each and
    * every sysfs node is represented by single sysfs_dirent.
    *
    * As long as s_count reference is held, the sysfs_dirent itself is
    * accessible. Dereferencing s_elem or any other outer entity
    * requires s_active reference.
    */
    struct sysfs_dirent {
    atomic_t s_count;
    atomic_t s_active;
    struct sysfs_dirent *s_parent;
    struct sysfs_dirent *s_sibling;
    const char *s_name;

    union {
    struct sysfs_elem_dir s_dir;
    struct sysfs_elem_symlink s_symlink;
    struct sysfs_elem_attr s_attr;
    struct sysfs_elem_bin_attr s_bin_attr;
    };

    unsigned int s_flags;
    ino_t s_ino;
    umode_t s_mode;
    struct iattr *s_iattr;
    };
    其中比较关键的就是那个联合体,针对不同的形式(目录,symlink,属性文件和可执行文件)将使用不同的数据结构。
    另外,sysfs_dirent将最为dentry的fs专有数据被保存下来,这一点会在下面中看到。
    接着,在来看下sysfs_get_inode函数:
    下列函数位于fs/sysfs/inode.c。
    /**
    * sysfs_get_inode - get inode for sysfs_dirent
    * @sd: sysfs_dirent to allocate inode for
    *
    * Get inode for @sd. If such inode doesn't exist, a new inode
    * is allocated and basics are initialized. New inode is
    * returned locked.
    *
    * LOCKING:
    * Kernel thread context (may sleep).
    *
    * RETURNS:
    * Pointer to allocated inode on success, NULL on failure.
    */
    struct inode * sysfs_get_inode(struct sysfs_dirent *sd)
    {
    struct inode *inode;

    inode = iget_locked(sysfs_sb, sd->s_ino); /*在inode cache查找inode是否存在,不存在侧创建一个*/
    if (inode && (inode->i_state & I_NEW)) /*如果是新创建的inode,则包含I_NEW*/
    sysfs_init_inode(sd, inode);

    return inode;
    }

    /**
     * iget_locked - obtain an inode from a mounted file system
     * @sb:        super block of file system
     * @ino:    inode number to get
     *
     * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
     * the inode cache and if present it is returned with an increased reference
     * count. This is for file systems where the inode number is sufficient for
     * unique identification of an inode.
     *
     * If the inode is not in cache, get_new_inode_fast() is called to allocate a
     * new inode and this is returned locked, hashed, and with the I_NEW flag set.
     * The file system gets to fill it in before unlocking it via
     * unlock_new_inode().
     */
    struct inode *iget_locked(struct super_block *sb, unsigned long ino)
    {
        struct hlist_head *head = inode_hashtable + hash(sb, ino);
        struct inode *inode;

        inode = ifind_fast(sb, head, ino);/*在inode cache查找该inode*/
        if (inode)
            return inode;         /*找到了该inode*/
        /*
         * get_new_inode_fast() will do the right thing, re-trying the search
         * in case it had to block at any point.
         */
        return get_new_inode_fast(sb, head, ino);    /*分配一个新的inode*/
    }
    EXPORT_SYMBOL(iget_locked);

    static void sysfs_init_inode(struct sysfs_dirent *sd, struct inode *inode)
    {
        struct bin_attribute *bin_attr;

        inode->i_private = sysfs_get(sd);
        inode->i_mapping->a_ops = &sysfs_aops;
        inode->i_mapping->backing_dev_info = &sysfs_backing_dev_info;
        inode->i_op = &sysfs_inode_operations;
        inode->i_ino = sd->s_ino;
        lockdep_set_class(&inode->i_mutex, &sysfs_inode_imutex_key);

        if (sd->s_iattr) {
            /* sysfs_dirent has non-default attributes
             * get them for the new inode from persistent copy
             * in sysfs_dirent
             */
            set_inode_attr(inode, sd->s_iattr);
        } else
            set_default_inode_attr(inode, sd->s_mode);/*设置inode属性*/


        /* initialize inode according to type */
        switch (sysfs_type(sd)) {
        case SYSFS_DIR:
            inode->i_op = &sysfs_dir_inode_operations;
            inode->i_fop = &sysfs_dir_operations;
            inode->i_nlink = sysfs_count_nlink(sd);
            break;
        case SYSFS_KOBJ_ATTR:
            inode->i_size = PAGE_SIZE;
            inode->i_fop = &sysfs_file_operations;
            break;
        case SYSFS_KOBJ_BIN_ATTR:
            bin_attr = sd->s_bin_attr.bin_attr;
            inode->i_size = bin_attr->size;
            inode->i_fop = &bin_fops;
            break;
        case SYSFS_KOBJ_LINK:
            inode->i_op = &sysfs_symlink_inode_operations;
            break;
        default:
            BUG();
        }

        unlock_new_inode(inode);
    }
    该函数首先调用了,iget_locked来查找该inode是否已存在,如果不存在则创建。如果是新创建的inode,则对inode进行初始化。
    再获取了根目录的inode和sysfs_dirent后,调用d_alloc_root来获得dirent。
    /**
    * d_alloc_root - allocate root dentry
    * @root_inode: inode to allocate the root for
    *
    * Allocate a root ("/") dentry for the inode given. The inode is
    * instantiated and returned. %NULL is returned if there is insufficient
    * memory or the inode passed is %NULL.
    */

    struct dentry * d_alloc_root(struct inode * root_inode)
    {
    struct dentry *res = NULL;

    if (root_inode) {
    static const struct qstr name = { .name = "/", .len = 1 };

    res = d_alloc(NULL, &name); /*分配struct dentry,没有父dentry*/
    if (res) {
    res->d_sb = root_inode->i_sb;
    res->d_parent = res;
    d_instantiated_instantiate(res, root_inode); /*绑定inode和dentry之间的关系*/
    }
    }
    return res;
    }

    /**
     * d_alloc    -    allocate a dcache entry
     * @parent: parent of entry to allocate
     * @name: qstr of the name
     *
     * Allocates a dentry. It returns %NULL if there is insufficient memory
     * available. On a success the dentry is returned. The name passed in is
     * copied and the copy passed in may be reused after this call.
     */
     
    struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
    {
        struct dentry *dentry;
        char *dname;

        dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);/*分配struct dentry*/
        if (!dentry)
            return NULL;

        if (name->len > DNAME_INLINE_LEN-1) {
            dname = kmalloc(name->len + 1, GFP_KERNEL);
            if (!dname) {
                kmem_cache_free(dentry_cache, dentry);
                return NULL;
            }
        } else  {
            dname = dentry->d_iname;
        }    
        dentry->d_name.name = dname;

        dentry->d_name.len = name->len;
        dentry->d_name.hash = name->hash;
        memcpy(dname, name->name, name->len);
        dname[name->len] = 0;

        atomic_set(&dentry->d_count, 1);
        dentry->d_flags = DCACHE_UNHASHED;
        spin_lock_init(&dentry->d_lock);
        dentry->d_inode = NULL;
        dentry->d_parent = NULL;
        dentry->d_sb = NULL;
        dentry->d_op = NULL;
        dentry->d_fsdata = NULL;
        dentry->d_mounted = 0;
        INIT_HLIST_NODE(&dentry->d_hash);
        INIT_LIST_HEAD(&dentry->d_lru);
        INIT_LIST_HEAD(&dentry->d_subdirs);
        INIT_LIST_HEAD(&dentry->d_alias);

        if (parent) {    /*有父目录,则设置指针来表示关系*/
            dentry->d_parent = dget(parent);
            dentry->d_sb = parent->d_sb; /*根dentry的父对象为自己*/
        } else {
            INIT_LIST_HEAD(&dentry->d_u.d_child);
        }

        spin_lock(&dcache_lock);
        if (parent)        /*有父目录,则添加到父目录的儿子链表中*/
            list_add(&dentry->d_u.d_child, &parent->d_subdirs);
        dentry_stat.nr_dentry++;
        spin_unlock(&dcache_lock);

        return dentry;
    }

    /**
     * d_instantiate - fill in inode information for a dentry
     * @entry: dentry to complete
     * @inode: inode to attach to this dentry
     *
     * Fill in inode information in the entry.
     *
     * This turns negative dentries into productive full members
     * of society.
     *
     * NOTE! This assumes that the inode count has been incremented
     * (or otherwise set) by the caller to indicate that it is now
     * in use by the dcache.
     */
     
    void d_instantiate(struct dentry *entry, struct inode * inode)
    {
        BUG_ON(!list_empty(&entry->d_alias));
        spin_lock(&dcache_lock);
        __d_instantiate(entry, inode);
        spin_unlock(&dcache_lock);
        security_d_instantiate(entry, inode);
    }

    /* the caller must hold dcache_lock */
    static void __d_instantiate(struct dentry *dentry, struct inode *inode)
    {
        if (inode)
            list_add(&dentry->d_alias, &inode->i_dentry);/*将dentry添加到inode的链表中*/
        dentry->d_inode = inode;        /*保存dentry对应的inode*/
        fsnotify_d_instantiate(dentry, inode);
    }

    该函数首先调用了d_alloc来创建struct dentry,参数parent为NULL,既然是为根( / )建立dentry,自然没有父对象。
    接着调用d_instantiate来绑定inode和dentry之间的关系。


    在sysfs_fill_super函数执行的最后,将sysfs_root保存到了dentry->d_fsdata。

    可见,在sysfs中用sysfs_dirent来表示目录,但是对于VFS,还是要使用dentry来表示目录。

    8.2.3  do_remount_sb
    下列代码位于fs/super.c。
    /**
    * do_remount_sb - asks filesystem to change mount options.
    * @sb: superblock in question
    * @flags: numeric part of options
    * @data: the rest of options
    * @force: whether or not to force the change
    *
    * Alters the mount options of a mounted file system.
    */
    int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
    {
    int retval;
    int remount_rw;

    #ifdef CONFIG_BLOCK
    if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
    return -EACCES;
    #endif
    if (flags & MS_RDONLY)
    acct_auto_close(sb);
    shrink_dcache_sb(sb);
    fsync_super(sb);

    /* If we are remounting RDONLY and current sb is read/write,
    make sure there are no rw files opened */
    if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
    if (force)
    mark_files_ro(sb);
    else if (!fs_may_remount_ro(sb))
    return -EBUSY;
    retval = vfs_dq_off(sb, 1);
    if (retval < 0 && retval != -ENOSYS)
    return -EBUSY;
    }
    remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);

    if (sb->s_op->remount_fs) {
    lock_super(sb);
    retval = sb->s_op->remount_fs(sb, &flags, data);
    unlock_super(sb);
    if (retval)
    return retval;
    }
    sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
    if (remount_rw)
    vfs_dq_quota_on_remount(sb);
    return 0;
    }

    这个函数用来修改挂在选项,这个函数就不分析了,不是重点。
    8.2.4simple_set_mnt
    下列函数位于fs/namespace.c。
    void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
    {
    mnt->mnt_sb = sb;
    mnt->mnt_root = dget(sb->s_root);
    }
    该函数设置了vfsmount的superblock和根dentry。

    8.2.5 小结
    这里,对sysfs的注册过程做一个总结。

    sysfs_init函数调用过程示意图如下:


    在整个过程中,先后使用和创建了许多struct

    第一,根据file_system_type表示的sysfs文件系统的类型注册了sysfs。

    第二,建立了vfsmount。

    第三,创建了超级块super_block。

    第四,根据sysfs_dirent表示的根目录,建立了inode。

    最后,根据刚才建立的inode创建了dentry。

    除了sysfs_dirent,其他5个结构体都是VFS中基本的数据结构,而sysfs_dirent则是特定于sysfs文件系统的数据结构。

    8.3 创建目录
    在前面的描述中,使用sysfs_create_dir在sysfs下建立一个目录。我们来看下这个函数是如何来建立目录的。

    下列代码位于fs/sysfs/dir.c。
    /**
    * sysfs_create_dir - create a directory for an object.
    * @kobj: object we're creating directory for.
    */
    int sysfs_create_dir(struct kobject * kobj)
    {
    struct sysfs_dirent *parent_sd, *sd;
    int error = 0;

    BUG_ON(!kobj);

    if (kobj->parent) /*如果有parent,获取parent对应的sys目录*/
    parent_sd = kobj->parent->sd;
    else /*没有则是在sys根目录*/
    parent_sd = &sysfs_root;

    error = create_dir(kobj, parent_sd, kobject_name(kobj), &sd);
    if (!error)
    kobj->sd = sd;
    return error;
    }

    函数中,首先获取待建目录的父sysfs_dirent,然后将它作为参数 来调用create_dir函数。
    很明显,就是要在父sysfs_dirent下建立新的sysfs_dirent,新建立的sysfs_dirent将保存到参数sd中。

    下列代码位于fs/sysfs/dir.c。
    static int create_dir(struct kobject *kobj, struct sysfs_dirent *parent_sd,
    const char *name, struct sysfs_dirent **p_sd)
    {
    umode_t mode = S_IFDIR| S_IRWXU | S_IRUGO | S_IXUGO;
    struct sysfs_addrm_cxt acxt;
    struct sysfs_dirent *sd;
    int rc;

    /* allocate */ /*分配sysfs_dirent并初始化*/
    sd = sysfs_new_dirent(name, mode, SYSFS_DIR);
    if (!sd)
    return -ENOMEM;
    sd->s_dir.kobj = kobj; /*保存kobject对象*/

    /* link in */
    sysfs_addrm_start(&acxt, parent_sd);/*寻找父sysfs_dirent对应的inode*/
    rc = sysfs_add_one(&acxt, sd); /*检查父sysfs_dirent下是否已有有该sysfs_dirent,没有则添加到父sysfs_dirent中*/
    sysfs_addrm_finish(&acxt); /*收尾工作*/

    if (rc == 0) /*rc为0表示创建成功*/
    *p_sd = sd;
    else
    sysfs_put(sd); /*增加引用计数*/

    return rc;
    }
    这里要注意一下mode变量,改变了使用了宏定义SYSFS_DIR,这个就表示要创建的是一个目录。

    mode还有几个宏定义可以使用,如下:
    #define SYSFS_KOBJ_ATTR 0x0002
    #define SYSFS_KOBJ_BIN_ATTR 0x0004
    #define SYSFS_KOBJ_LINK 0x0008
    #define SYSFS_COPY_NAME (SYSFS_DIR | SYSFS_KOBJ_LINK)
    8.3.1 sysfs_new_dirent
      在create_dir函数中,首先调用了sysfs_new_dirent来建立一个新的sysfs_dirent结构体。

    下列代码位于fs/sysfs/dir.c。
    struct sysfs_dirent *sysfs_new_dirent(const char *name, umode_t mode, int type)
    {
    char *dup_name = NULL;
    struct sysfs_dirent *sd;

    if (type & SYSFS_COPY_NAME) {
    name = dup_name = kstrdup(name, GFP_KERNEL);
    if (!name)
    return NULL;
    }
    /*分配sysfs_dirent并清0*/
    sd = kmem_cache_zalloc(sysfs_dir_cachep, GFP_KERNEL);
    if (!sd)
    goto err_out1;

    if (sysfs_alloc_ino(&sd->s_ino)) /*分配ID号*/
    goto err_out2;

    atomic_set(&sd->s_count, 1);
    atomic_set(&sd->s_active, 0);

    sd->s_name = name;
    sd->s_mode = mode;
    sd->s_flags = type;

    return sd;

    err_out2:
    kmem_cache_free(sysfs_dir_cachep, sd);
    err_out1:
    kfree(dup_name);
    return NULL;
    }
    8.3.2 有关sysfs_dirent中的联合体
    分配了sysfs_dirent后,设置了该结构中的联合体数据。先来看下联合体中的四个数据结构。

    /* type-specific structures for sysfs_dirent->s_* union members */
    struct sysfs_elem_dir {
    struct kobject *kobj;
    /* children list starts here and goes through sd->s_sibling */
    struct sysfs_dirent *children;
    };

    struct sysfs_elem_symlink {
        struct sysfs_dirent    *target_sd;
    };

    struct sysfs_elem_attr {
        struct attribute    *attr;
        struct sysfs_open_dirent *open;
    };

    struct sysfs_elem_bin_attr {
        struct bin_attribute    *bin_attr;
        struct hlist_head    buffers;
    };
    根据sysfs_dirent所代表的类型不同,也就是目录,synlink,属性文件和bin文件,将分别使用该联合体中相应的struct。
    在本例中要创建的是目录,自然使用sysfs_elem_dir结构体,然后保存了kobject对象。

    在8.4和8.5中我们将分别看到sysfs_elem_attr和sysfs_elem_symlink的使用。

    8.3.3 sysfs_addrm_start
    在获取了父sysfs_dirent,调用sysfs_addrm_start来获取与之对应的inode。

    下列代码位于fs/sysfs/dir.c。
    /**
    * sysfs_addrm_start - prepare for sysfs_dirent add/remove
    * @acxt: pointer to sysfs_addrm_cxt to be used
    * @parent_sd: parent sysfs_dirent
    *
    * This function is called when the caller is about to add or
    * remove sysfs_dirent under @parent_sd. This function acquires
    * sysfs_mutex, grabs inode for @parent_sd if available and lock
    * i_mutex of it. @acxt is used to keep and pass context to
    * other addrm functions.
    *
    * LOCKING:
    * Kernel thread context (may sleep). sysfs_mutex is locked on
    * return. i_mutex of parent inode is locked on return if
    * available.
    */
    void sysfs_addrm_start(struct sysfs_addrm_cxt *acxt,
    struct sysfs_dirent *parent_sd)
    {
    struct inode *inode;

    memset(acxt, 0, sizeof(*acxt));
    acxt->parent_sd = parent_sd;

    /* Lookup parent inode. inode initialization is protected by
    * sysfs_mutex, so inode existence can be determined by
    * looking up inode while holding sysfs_mutex.
    */
    mutex_lock(&sysfs_mutex);
    /*根据parent_sd来寻找父inode*/
    inode = ilookup5(sysfs_sb, parent_sd->s_ino, sysfs_ilookup_test,
    parent_sd);
    if (inode) {
    WARN_ON(inode->i_state & I_NEW);

    /* parent inode available */
    acxt->parent_inode = inode; /*保存找到的父inode*/

    /* sysfs_mutex is below i_mutex in lock hierarchy.
    * First, trylock i_mutex. If fails, unlock
    * sysfs_mutex and lock them in order.
    */
    if (!mutex_trylock(&inode->i_mutex)) {
    mutex_unlock(&sysfs_mutex);
    mutex_lock(&inode->i_mutex);
    mutex_lock(&sysfs_mutex);
    }
    }
    }

    /*
     * Context structure to be used while adding/removing nodes.
     */
    struct sysfs_addrm_cxt {
        struct sysfs_dirent    *parent_sd;
        struct inode        *parent_inode;
        struct sysfs_dirent    *removed;
        int            cnt;
    };
    注意形参sysfs_addrm_cxt,该结构作用是临时存放数据。
    8.3.4 sysfs_add_one
    下列代码位于fs/sysfs/dir.c。
    /**
    * sysfs_add_one - add sysfs_dirent to parent
    * @acxt: addrm context to use
    * @sd: sysfs_dirent to be added
    *
    * Get @acxt->parent_sd and set sd->s_parent to it and increment
    * nlink of parent inode if @sd is a directory and link into the
    * children list of the parent.
    *
    * This function should be called between calls to
    * sysfs_addrm_start() and sysfs_addrm_finish() and should be
    * passed the same @acxt as passed to sysfs_addrm_start().
    *
    * LOCKING:
    * Determined by sysfs_addrm_start().
    *
    * RETURNS:
    * 0 on success, -EEXIST if entry with the given name already
    * exists.
    */
    int sysfs_add_one(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd)
    {
    int ret;

    ret = __sysfs_add_one(acxt, sd);
    if (ret == -EEXIST) {
    char *path = kzalloc(PATH_MAX, GFP_KERNEL);
    WARN(1, KERN_WARNING
    "sysfs: cannot create duplicate filename '%s' ",
    (path == NULL) ? sd->s_name :
    strcat(strcat(sysfs_pathname(acxt->parent_sd, path), "/"),
    sd->s_name));
    kfree(path);
    }

    return ret;
    }

    /**
     *    __sysfs_add_one - add sysfs_dirent to parent without warning
     *    @acxt: addrm context to use
     *    @sd: sysfs_dirent to be added
     *
     *    Get @acxt->parent_sd and set sd->s_parent to it and increment
     *    nlink of parent inode if @sd is a directory and link into the
     *    children list of the parent.
     *
     *    This function should be called between calls to
     *    sysfs_addrm_start() and sysfs_addrm_finish() and should be
     *    passed the same @acxt as passed to sysfs_addrm_start().
     *
     *    LOCKING:
     *    Determined by sysfs_addrm_start().
     *
     *    RETURNS:
     *    0 on success, -EEXIST if entry with the given name already
     *    exists.
     */
    int __sysfs_add_one(struct sysfs_addrm_cxt *acxt, struct sysfs_dirent *sd)
    {
        /*查找该parent_sd下有无将要建立的sd,没有返回NULL*/
        if (sysfs_find_dirent(acxt->parent_sd, sd->s_name))
            return -EEXIST;

        sd->s_parent = sysfs_get(acxt->parent_sd);    /*设置父sysfs_dirent,增加父sysfs_dirent的引用计数*/

        if (sysfs_type(sd) == SYSFS_DIR && acxt->parent_inode)    /*如果要创建的是目录或文件,并且有父inode*/
            inc_nlink(acxt->parent_inode);    /*inode->i_nlink加1*/

        acxt->cnt++;

        sysfs_link_sibling(sd);

        return 0;
    }

    /**
     *    sysfs_find_dirent - find sysfs_dirent with the given name
     *    @parent_sd: sysfs_dirent to search under
     *    @name: name to look for
     *
     *    Look for sysfs_dirent with name @name under @parent_sd.
     *
     *    LOCKING:
     *    mutex_lock(sysfs_mutex)
     *
     *    RETURNS:
     *    Pointer to sysfs_dirent if found, NULL if not.
     */
    struct sysfs_dirent *sysfs_find_dirent(struct sysfs_dirent *parent_sd,
                           const unsigned char *name)
    {
        struct sysfs_dirent *sd;

        for (sd = parent_sd->s_dir.children; sd; sd = sd->s_sibling)
            if (!strcmp(sd->s_name, name))
                return sd;
        return NULL;
    }

    /**
     *    sysfs_link_sibling - link sysfs_dirent into sibling list
     *    @sd: sysfs_dirent of interest
     *
     *    Link @sd into its sibling list which starts from
     *    sd->s_parent->s_dir.children.
     *
     *    Locking:
     *    mutex_lock(sysfs_mutex)
     */
    static void sysfs_link_sibling(struct sysfs_dirent *sd)
    {
        struct sysfs_dirent *parent_sd = sd->s_parent;
        struct sysfs_dirent **pos;

        BUG_ON(sd->s_sibling);

        /* Store directory entries in order by ino.  This allows
         * readdir to properly restart without having to add a
         * cursor into the s_dir.children list.
         */
         /*children链表根据s_ino按升序排列,现在将sd插入到正确的儿子链表中*/
        for (pos = &parent_sd->s_dir.children; *pos; pos = &(*pos)->s_sibling) {
            if (sd->s_ino < (*pos)->s_ino)
                break;
        }
    /*插入链表*/
        sd->s_sibling = *pos;
        *pos = sd;
    }
    该函数直接调用了__sysfs_add_one,后者先调用sysfs_find_dirent来查找该parent_sd下有无该的sysfs_dirent,如果没有,则设置创建好的新的sysfs_dirent的s_parent字段。也就是将新的sysfs_dirent添加到父sys_dirent中。接着调用sysfs_link_sibling函数,将新建的sysfs_dirent添加到sd->s_parent->s_dir.children链表中。
    8.3.5 sysfs_addrm_finish
    下列代码位于fs/sysfs/dir.c。

    /**
    * sysfs_addrm_finish - finish up sysfs_dirent add/remove
    * @acxt: addrm context to finish up
    *
    * Finish up sysfs_dirent add/remove. Resources acquired by
    * sysfs_addrm_start() are released and removed sysfs_dirents are
    * cleaned up. Timestamps on the parent inode are updated.
    *
    * LOCKING:
    * All mutexes acquired by sysfs_addrm_start() are released.
    */
    void sysfs_addrm_finish(struct sysfs_addrm_cxt *acxt)
    {
    /* release resources acquired by sysfs_addrm_start() */
    mutex_unlock(&sysfs_mutex);
    if (acxt->parent_inode) {
    struct inode *inode = acxt->parent_inode;

    /* if added/removed, update timestamps on the parent */
    if (acxt->cnt)
    inode->i_ctime = inode->i_mtime = CURRENT_TIME;/*更新父inode的时间*/

    mutex_unlock(&inode->i_mutex);
    iput(inode);
    }

    /* kill removed sysfs_dirents */
    while (acxt->removed) {
    struct sysfs_dirent *sd = acxt->removed;

    acxt->removed = sd->s_sibling;
    sd->s_sibling = NULL;

    sysfs_drop_dentry(sd);
    sysfs_deactivate(sd);
    unmap_bin_file(sd);
    sysfs_put(sd);
    }
    }

    该函数结束了添加sysfs_dirent的工作,这个就不多做说明了。

    至此,添加一个目录的工作已经完成了,添加目录的工作其实就是创建了一个新的sysfs_dirent,并把它添加到父sysfs_dirent中。

    下面我们看下如何添加属性文件。
    8.4 创建属性文件
    添加属性文件使用sysfs_create_file函数。

    下列函数位于fs/sysfs/file.c。
    /**
    * sysfs_create_file - create an attribute file for an object.
    * @kobj: object we're creating for.
    * @attr: attribute descriptor.
    */

    int sysfs_create_file(struct kobject * kobj, const struct attribute * attr)
    {
    BUG_ON(!kobj || !kobj->sd || !attr);

    return sysfs_add_file(kobj->sd, attr, SYSFS_KOBJ_ATTR);

    }

    int sysfs_add_file(struct sysfs_dirent *dir_sd, const struct attribute *attr,
               int type)
    {
        return sysfs_add_file_mode(dir_sd, attr, type, attr->mode);
    }

    int sysfs_add_file_mode(struct sysfs_dirent *dir_sd,
                const struct attribute *attr, int type, mode_t amode)
    {
        umode_t mode = (amode & S_IALLUGO) | S_IFREG;
        struct sysfs_addrm_cxt acxt;
        struct sysfs_dirent *sd;
        int rc;
        /*分配sysfs_dirent并初始化*/
        sd = sysfs_new_dirent(attr->name, mode, type);
        if (!sd)
            return -ENOMEM;
        sd->s_attr.attr = (void *)attr;

        sysfs_addrm_start(&acxt, dir_sd);    /*寻找父sysfs_dirent对应的inode*/
        rc = sysfs_add_one(&acxt, sd);        /*检查父sysfs_dirent下是否已有有该sysfs_dirent,没有则创建*/
        sysfs_addrm_finish(&acxt);            /*收尾工作*/

        if (rc)            /*0表示创建成功*/
            sysfs_put(sd);

        return rc;
    }

    sysfs_create_file用参数SYSFS_KOBJ_ATTR(表示建立属性文件)来调用了sysfs_add_file,后者又直接调用了sysfs_add_file_mode。
    sysfs_add_file_mode函数的执行和8.3节的create_dir函数非常类似,只不过它并没有保存kobject对象,也就是说该sysfs_dirent并没有一个对应的kobject对象。

    需要注意的是,这里是建立属性文件,因此使用了联合体中的结构体s_attr。
    8.5 创建symlink
    最后,来看下symlink的建立。
    /**
    * sysfs_create_link - create symlink between two objects.
    * @kobj: object whose directory we're creating the link in.
    * @target: object we're pointing to.
    * @name: name of the symlink.
    */
    int sysfs_create_link(struct kobject *kobj, struct kobject *target,
    const char *name)
    {
    return sysfs_do_create_link(kobj, target, name, 1);
    }

    static int sysfs_do_create_link(struct kobject *kobj, struct kobject *target,
                    const char *name, int warn)
    {
        struct sysfs_dirent *parent_sd = NULL;
        struct sysfs_dirent *target_sd = NULL;
        struct sysfs_dirent *sd = NULL;
        struct sysfs_addrm_cxt acxt;
        int error;

        BUG_ON(!name);

        if (!kobj)    /*kobj为空,表示在sysyfs跟目录下建立symlink*/
            parent_sd = &sysfs_root;
        else        /*有父sysfs_dirent*/
            parent_sd = kobj->sd;

        error = -EFAULT;
        if (!parent_sd)
            goto out_put;

        /* target->sd can go away beneath us but is protected with
         * sysfs_assoc_lock.  Fetch target_sd from it.
         */
        spin_lock(&sysfs_assoc_lock);
        if (target->sd)
            target_sd = sysfs_get(target->sd);    、/*获取目标对象的sysfs_dirent*/
        spin_unlock(&sysfs_assoc_lock);

        error = -ENOENT;
        if (!target_sd)
            goto out_put;

        error = -ENOMEM;
        /*分配sysfs_dirent并初始化*/
        sd = sysfs_new_dirent(name, S_IFLNK|S_IRWXUGO, SYSFS_KOBJ_LINK);
        if (!sd)
            goto out_put;

        sd->s_symlink.target_sd = target_sd;/*保存目标sysfs_dirent*/
        target_sd = NULL;    /* reference is now owned by the symlink */

        sysfs_addrm_start(&acxt, parent_sd);/*寻找父sysfs_dirent对应的inode*/
        if (warn)
            error = sysfs_add_one(&acxt, sd);/*检查父sysfs_dirent下是否已有有该sysfs_dirent,没有则创建*/
        else
            error = __sysfs_add_one(&acxt, sd);
        sysfs_addrm_finish(&acxt);            /*收尾工作*/

        if (error)
            goto out_put;

        return 0;

     out_put:
        sysfs_put(target_sd);
        sysfs_put(sd);
        return error;
    }

    这个函数的执行也和8.3节的create_dir函数非常类似。其次,symlink同样没有对应的kobject对象。
    因为sysfs_dirent表示的是symlink,这里使用了联合体中的s_symlink。同时设置了s_symlink.target_sd指向的目标sysfs_dirent为参数targed_sd。

    8.6 小结
    本节首先对syfs这一特殊的文件系统的注册过程进行了分析。接着对目录,属性文件和symlink的建立进行了分析。这三者的建立过程基本一致,但是目录

    有kobject对象,而剩余两个没有。其次,这三者的每个sysfs_dirent中,都使用了自己的联合体数据。

    9 总结
    本文首先对sysfs的核心数据kobject,kset等数据结构做出了分析,正是通过它们才能向用户空间呈现出设备驱动模型。

    接着,以/sys/bus目录的建立为例,来说明如何通过kobject和kset来建立该bus目录。

    随后,介绍了驱动模型中表示总线,设备和驱动的三个数据结构。

    然后,介绍了platform总线(bus/platform)的注册,再介绍了虚拟的platform设备(devices/platform)的添加过程。

    之后 ,以spi主控制器的platform设备为例,介绍了该platform设备和相应的驱动的注册过程。

    最后,介绍了底层sysfs文件系统的注册过程和如何建立目录,属性文件和symlink的过程。

    原文:https://blog.csdn.net/yj4231/article/details/7799245

  • 相关阅读:
    Linux Systemcall By INT 0x80、Llinux Kernel Debug Based On Sourcecode
    ELF(Executable and Linkable Format)
    Linux文件权限;ACL;Setuid、Setgid、Stick bit特殊权限;sudo提权
    Linux System Calls Hooking Method Summary
    GCC、Makefile编程学习
    Linux Process/Thread Creation、Linux Process Principle、sys_fork、sys_execve、glibc fork/execve api sourcecode
    Linux中断技术、门描述符、IDT(中断描述符表)、异常控制技术总结归类
    浅议SNMP安全、SNMP协议、网络管理学习
    DNS安全浅议、域名A记录(ANAME),MX记录,CNAME记录
    RIP、OSPF、BGP、动态路由选路协议、自治域AS
  • 原文地址:https://www.cnblogs.com/wei-chen-linux/p/10775042.html
Copyright © 2011-2022 走看看