Description
Given m sequences, each contains n non-negative integer. Now we may select one number from each sequence to form a sequence with m integers. It's clear that we may get n ^ m this kind of sequences. Then we can calculate the sum of numbers in each sequence, and get n ^ m values. What we need is the smallest n sums. Could you help us?
Input
The first line is an integer T, which shows the number of test cases, and then T test cases follow. The first line of each case contains two integers m, n (0 < m <= 100, 0 < n <= 2000). The following m lines indicate the m sequence respectively. No integer in the sequence is greater than 10000.
Output
For each test case, print a line with the smallest n sums in increasing order, which is separated by a space.
Sample Input
1 2 3 1 2 3 2 2 3
Sample Output
3 3 4
Source
POJ Monthly,Guang Lin
题目大意
给定n个序列,每个序列长度为m,在每个序列中各取一个数并求和,输出前m小的和
解题思路
共n*m种取法,显然是个求k小堆的问题,但我用了优先队列直接写了,不过据说,二分比优先队列快好多...
贡献些数据吧:
10 10 21 12 123 3 21 123 32 143 43 56 2 32 43 34 54 56 656 76 43 234 234 45 5 65 56 76 43 23 435 57 32 324 435 46 56 76 87 78 43 23 3 32 324 45 56 57 34 23 54 565 23 32 34 342 324 232 2 432 324 12 234 324 4 45 65 67 435 23 5 654 34 3245 345 56 56 657 67 456 345 325 234 234 546 65 88 66 53 654 65 765 5 3 34 34 34 56 345 234 2 34 答案是:131 132 132 133 134 135 140 140 141 141
AC代码:
#include <stdio.h> #include <iostream> #include <algorithm> #include <queue> using namespace std; int a[3003],num[3003],n,m,t; void solve() { priority_queue<int >q; for(int i=0;i<m;i++) q.push(a[i]+num[0]);///将num序列最小的放进去 for(int i=0;i<m;i++) for(int j=1;j<m;j++) { int x=a[i]+num[j];///遍历加和 if(x<q.top()) q.push(x),q.pop(); else break;///从小到大排序 所以第一个小的不符合后面就不用看了 } for(int i=m-1;i>=0;i--) /// 因为大的优先级高 所以倒序存入a继续参加之后的加和过程 { a[i]=q.top(); q.pop(); } } int main() { cin>>t; while(t--) { cin>>n>>m; for(int i=0;i<m;i++) scanf("%d",&a[i]); sort(a,a+m); for(int i=1;i<n;i++) { for(int j=0;j<m;j++) cin>>num[j]; sort(num,num+m); solve(); } for(int i=0;i<m;i++) printf("%d%c",a[i],i==m-1?' ':' '); } return 0; }