zoukankan      html  css  js  c++  java
  • pandas-08 pd.cut()的功能和作用

    pandas-08 pd.cut()的功能和作用

    pd.cut()的作用,有点类似给成绩设定优良中差,比如:0-59分为差,60-70分为中,71-80分为优秀等等,在pandas中,也提供了这样一个方法来处理这些事儿。直接上代码:

    import numpy as np
    import pandas as pd
    from pandas import Series, DataFrame
    
    np.random.seed(666)
    
    score_list = np.random.randint(25, 100, size=20)
    print(score_list)
    # [27 70 55 87 95 98 55 61 86 76 85 53 39 88 41 71 64 94 38 94]
    
    # 指定多个区间
    bins = [0, 59, 70, 80, 100]
    
    score_cut = pd.cut(score_list, bins)
    print(type(score_cut)) # <class 'pandas.core.arrays.categorical.Categorical'>
    print(score_cut)
    '''
    [(0, 59], (59, 70], (0, 59], (80, 100], (80, 100], ..., (70, 80], (59, 70], (80, 100], (0, 59], (80, 100]]
    Length: 20
    Categories (4, interval[int64]): [(0, 59] < (59, 70] < (70, 80] < (80, 100]]
    '''
    print(pd.value_counts(score_cut)) # 统计每个区间人数
    '''
    (80, 100]    8
    (0, 59]      7
    (59, 70]     3
    (70, 80]     2
    dtype: int64
    '''
    
    df = DataFrame()
    df['score'] = score_list
    df['student'] = [pd.util.testing.rands(3) for i in range(len(score_list))]
    print(df)
    '''
        score student
    0      27     1ul
    1      70     yuK
    2      55     WWK
    3      87     EU6
    4      95     Vqn
    5      98     KAf
    6      55     QNT
    7      61     HaE
    8      86     aBo
    9      76     MMa
    10     85     Ctc
    11     53     5BI
    12     39     wBp
    13     88     WMB
    14     41     q5t
    15     71     MjZ
    16     64     nTc
    17     94     Kyx
    18     38     Rlh
    19     94     2uV
    '''
    
    # 使用cut方法进行分箱
    print(pd.cut(df['score'], bins))
    '''
    0       (0, 59]
    1      (59, 70]
    2       (0, 59]
    3     (80, 100]
    4     (80, 100]
    5     (80, 100]
    6       (0, 59]
    7      (59, 70]
    8     (80, 100]
    9      (70, 80]
    10    (80, 100]
    11      (0, 59]
    12      (0, 59]
    13    (80, 100]
    14      (0, 59]
    15     (70, 80]
    16     (59, 70]
    17    (80, 100]
    18      (0, 59]
    19    (80, 100]
    Name: score, dtype: category
    Categories (4, interval[int64]): [(0, 59] < (59, 70] < (70, 80] < (80, 100]]
    '''
    
    df['Categories'] = pd.cut(df['score'], bins)
    print(df)
    '''
        score student Categories
    0      27     1ul    (0, 59]
    1      70     yuK   (59, 70]
    2      55     WWK    (0, 59]
    3      87     EU6  (80, 100]
    4      95     Vqn  (80, 100]
    5      98     KAf  (80, 100]
    6      55     QNT    (0, 59]
    7      61     HaE   (59, 70]
    8      86     aBo  (80, 100]
    9      76     MMa   (70, 80]
    10     85     Ctc  (80, 100]
    11     53     5BI    (0, 59]
    12     39     wBp    (0, 59]
    13     88     WMB  (80, 100]
    14     41     q5t    (0, 59]
    15     71     MjZ   (70, 80]
    16     64     nTc   (59, 70]
    17     94     Kyx  (80, 100]
    18     38     Rlh    (0, 59]
    19     94     2uV  (80, 100]
    '''
    
    # 但是这样的方法不是很适合阅读,可以使用cut方法中的label参数
    # 为每个区间指定一个label
    df['Categories'] = pd.cut(df['score'], bins, labels=['low', 'middle', 'good', 'perfect'])
    print(df)
    '''
        score student Categories
    0      27     1ul        low
    1      70     yuK     middle
    2      55     WWK        low
    3      87     EU6    perfect
    4      95     Vqn    perfect
    5      98     KAf    perfect
    6      55     QNT        low
    7      61     HaE     middle
    8      86     aBo    perfect
    9      76     MMa       good
    10     85     Ctc    perfect
    11     53     5BI        low
    12     39     wBp        low
    13     88     WMB    perfect
    14     41     q5t        low
    15     71     MjZ       good
    16     64     nTc     middle
    17     94     Kyx    perfect
    18     38     Rlh        low
    19     94     2uV    perfect
    '''
    
  • 相关阅读:
    程序员的自我修养
    c++中的const 限定修饰符
    基于.net开发平台项目案例集锦
    中国期货公司排行及相关上市公司
    备份一些好的书籍名字
    商业银行房贷业务节后骤然下降
    散户炒股七大绝招 巨额获利风险小 (网摘)
    上海2月住宅供应剧减七成 房企捂盘保价
    2009年中国各省人均GDP排名(鄂尔多斯人均GDP将很有可能超过两万美元,全国第一)
    (载自MSN )个人炒汇多年来的一些心得
  • 原文地址:https://www.cnblogs.com/wenqiangit/p/11252758.html
Copyright © 2011-2022 走看看