zoukankan      html  css  js  c++  java
  • POJ 3692 Kindergarten(最大团问题)

    题目链接:
    http://poj.org/problem?id=3692

    Description

    In a kindergarten, there are a lot of kids. All girls of the kids know each other and all boys also know each other. In addition to that, some girls and boys know each other. Now the teachers want to pick some kids to play a game, which need that all players know each other. You are to help to find maximum number of kids the teacher can pick.

    Input

    The input consists of multiple test cases. Each test case starts with a line containing three integers
    G, B (1 ≤ G, B ≤ 200) and M (0 ≤ MG × B), which is the number of girls, the number of boys and
    the number of pairs of girl and boy who know each other, respectively.
    Each of the following M lines contains two integers X and Y (1 ≤ X≤ G,1 ≤ Y ≤ B), which indicates that girl X and boy Y know each other.
    The girls are numbered from 1 to G and the boys are numbered from 1 to B.

    The last test case is followed by a line containing three zeros.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by a integer which is the maximum number of kids the teacher can pick.

    Sample Input

    2 3 3
    1 1
    1 2
    2 3
    2 3 5
    1 1
    1 2
    2 1
    2 2
    2 3
    0 0 0

    Sample Output

    Case 1: 3
    Case 2: 4

    Source

     1 /*
     2 问题
     3 输入女孩和男孩的个数和部分女孩和男孩的认识关系
     4 计算并输出最多有多少个男孩和女孩是相互认识的
     5 
     6 解题思路
     7 属于图论中的最大团问题。了解了完全子图,意即该子图中任意两点相互连接,那么最大完全子图就是求解
     8 最大完全子图的顶点数,也就是俗语说的最大团问题了。
     9 再来说说如何求解最大完全子图顶点数
    10 有一个定理:最大团=原图补图的最大独立集=顶点数-原图补图最大匹配数
    11 
    12 那怎么什么是补图呢,其实就是原图的完全相反状态,1就是0,0就是1
    13 所以和求原图的最大独立集算法中只需将注释出改一个相反即可。 
    14 */ 
    15 #include<cstdio>
    16 #include<cstring>
    17 
    18 int g,b,m;
    19 int e[250][250],cx[250],cy[250],bk[250];
    20 int maxmatch();
    21 int path(int u);
    22 int main()
    23 {
    24     int t1,t2,t=1,i;
    25     while(scanf("%d%d%d",&g,&b,&m) == 3 && g+b+m != 0){
    26         memset(e,0,sizeof(int)*250*250);
    27         for(i=1;i<=m;i++){
    28             scanf("%d%d",&t1,&t2);
    29             e[t1][t2]=1;
    30         }
    31         printf("Case %d: %d
    ",t++,g+b-maxmatch());
    32     }
    33     return 0;
    34 }
    35 int maxmatch()
    36 {
    37     int i,ans=0;
    38     memset(cx,-1,sizeof(cx));
    39     memset(cy,-1,sizeof(cy));
    40     for(i=1;i<=g;i++){
    41         memset(bk,0,sizeof(bk));
    42         ans += path(i);
    43     }
    44     return ans;
    45 }
    46 int path(int u)
    47 {
    48     int i;
    49     for(i=1;i<=b;i++){
    50         if(!e[u][i] && !bk[i]){//求补图的最大独立集,所以只需将原来的e[u][i]变为!e[u][i]即可 
    51             bk[i]=1;
    52             if(cy[i] == -1 || path(cy[i])){
    53                 cy[i]=u;
    54                 cx[u]=i;
    55                 return 1;
    56             }
    57         }
    58     }
    59     return 0;
    60 }
  • 相关阅读:
    淘宝从几百到千万级并发的十四次架构演进之路!
    19 个强大、有趣、好玩、又装B的 Linux 命令!
    Spring Boot实战:拦截器与过滤器
    初识zookeeper,linux 安装配置zookeeper
    Spring-boot:5分钟整合Dubbo构建分布式服务
    Spring-Boot:6分钟掌握SpringBoot开发
    Dubbo的使用及原理浅析.
    Java消息队列--ActiveMq 初体验
    关于Ubuntu 常用的简单指令
    IBM、HPUX、Solaris不同之处
  • 原文地址:https://www.cnblogs.com/wenzhixin/p/9053767.html
Copyright © 2011-2022 走看看