思路:正反两遍求最短路,然后依据dist把那些最短路上的边又一次建图,注意是无向图,然后用Tarjan求割边。最后每条边推断输出。竟然卡SPFA,改成Dij就过了,以后就用Dij吧,恩。
。
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <string> #include <map> #include <stack> #include <vector> #include <set> #include <queue> #pragma comment (linker,"/STACK:102400000,102400000") #define pi acos(-1.0) #define eps 1e-6 #define lson rt<<1,l,mid #define rson rt<<1|1,mid+1,r #define FRE(i,a,b) for(i = a; i <= b; i++) #define FREE(i,a,b) for(i = a; i >= b; i--) #define FRL(i,a,b) for(i = a; i < b; i++) #define FRLL(i,a,b) for(i = a; i > b; i--) #define mem(t, v) memset ((t) , v, sizeof(t)) #define sf(n) scanf("%d", &n) #define sff(a,b) scanf("%d %d", &a, &b) #define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c) #define pf printf #define DBG pf("Hi ") typedef __int64 ll; using namespace std; #define INF 0x3f3f3f3f #define mod 1000000009 const int maxn = 1005; const int MAXN = 100011; const int MAXM = 250010; const int N = 1005; int n,m,s,t; struct Edge { int u,v,next,id; ll len; }e1[MAXM],e2[MAXM]; int head1[MAXN],head2[MAXN]; typedef pair<ll,int>P; ll dist1[MAXN],dist2[MAXN]; int num,tot,start,End; bool cut[MAXN]; int Low[MAXN],DFN[MAXN],Stack[MAXN]; bool Instack[MAXN]; int Index,top; void init() { num=0; tot=0; mem(head1,-1); memset(head2,-1,sizeof(head2)); } void addedge(int u,int v,ll w,int id) { e1[num].u=u; e1[num].v=v; e1[num].len=w; e1[num].id=id; e1[num].next=head1[u]; head1[u]=num++; } void addedge2(int u,int v,ll w,int id) { e2[tot].u=u; e2[tot].v=v; e2[tot].len=w; e2[tot].id=id; e2[tot].next=head2[u]; head2[u]=tot++; } void Dijkstra(int s,int t,int head[],ll dist[],Edge edge[]) { priority_queue<P,vector<P>,greater<P> >Q; dist[s]=0; Q.push(make_pair(0,s)); while (!Q.empty()) { P p=Q.top(); Q.pop(); int u=p.second; if (dist[u]<p.first) continue; for (int i=head[u];~i;i=edge[i].next) { int v=edge[i].v; if (dist[v]>dist[u]+edge[i].len) { dist[v]=dist[u]+edge[i].len; Q.push(make_pair(dist[v],v)); } } } } void Tarjan(int u,int pre) { int v; Low[u]=DFN[u]=++Index; Stack[top++]=u; Instack[u]=true; int pre_cnt=0; for (int i=head2[u];~i;i=e2[i].next) { v=e2[i].v; if (v==pre&&pre_cnt==0) { pre_cnt++;continue; } if (!DFN[v]) { Tarjan(v,u); if (Low[u]>Low[v]) Low[u]=Low[v]; if (Low[v]>DFN[u]) cut[e2[i].id]=true; } else if (Low[u]>DFN[v]) Low[u]=DFN[v]; } Instack[u]=false; top--; } void solve() { memset(DFN,0,sizeof(DFN)); memset(Instack,false,sizeof(Instack)); Index=top=0; for (int i=1;i<=n;i++) if (!DFN[i]) Tarjan(i,i); } int main() { #ifndef ONLINE_JUDGE freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin); #endif int i,j,u,v; ll w; while (~scanf("%d%d%d%d",&n,&m,&s,&t)) { init(); for (i=0;i<m;i++) { scanf("%d%d%I64d",&u,&v,&w); addedge(u,v,w,i); addedge2(v,u,w,i); } mem(dist1,INF); mem(dist2,INF); Dijkstra(s,t,head1,dist1,e1); Dijkstra(t,s,head2,dist2,e2); tot=0; memset(head2,-1,sizeof(head2)); for (i=0;i<m;i++) { cut[i]=false; u=e1[i].u; v=e1[i].v; if (dist1[u]+dist2[v]+e1[i].len==dist1[t]) { addedge2(u,v,e1[i].len,i); addedge2(v,u,e1[i].len,i); } } solve(); for (i=0;i<m;i++) { u=e1[i].u; v=e1[i].v; if (cut[i]) printf("YES "); else if (dist1[u]+dist2[v]+e1[i].len==dist1[t]) { if (e1[i].len>1) printf("CAN 1 "); else printf("NO "); } else { ll dd=dist1[t]-dist1[u]-dist2[v]-1; if (dd<=0) printf("NO "); else printf("CAN %I64d ",e1[i].len-dd); } } } return 0; }