zoukankan      html  css  js  c++  java
  • POJ 3384 Feng Shui --直线切平面

    题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大。

    解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠。 那么我们把所有边都向内推进r,那么形成的多边形,可知两个圆形地毯的中心就一定在这个多边形边界上,最优的情况下是在此新凸包的最远点对上。

    初始多边形为(-1000,-1000)到(1000,1000)的矩形,那么我们可以模拟把每条边都推进,每次切出新的凸多边形,然后得出最后的凸多边形,然后n^2枚举求最远点对即可。这里用到直线切割一个凸多边形的算法。

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <algorithm>
    #define Mod 1000000007
    #define pi acos(-1.0)
    #define eps 1e-8
    using namespace std;
    
    struct Point{
        double x,y;
        Point(double x=0, double y=0):x(x),y(y) {}
        void input() { scanf("%lf%lf",&x,&y); }
    };
    typedef Point Vector;
    struct Line{
        Point p;
        Vector v;
        double ang;
        Line(){}
        Line(Point p, Vector v):p(p),v(v) { ang = atan2(v.y,v.x); }
        Point point(double t) { return Point(p.x + t*v.x, p.y + t*v.y); }
        bool operator < (const Line &L)const { return ang < L.ang; }
    };
    int dcmp(double x) {
        if(x < -eps) return -1;
        if(x > eps) return 1;
        return 0;
    }
    template <class T> T sqr(T x) { return x * x;}
    Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
    Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
    Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
    Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }
    bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
    bool operator >= (const Point& a, const Point& b) { return a.x >= b.x && a.y >= b.y; }
    bool operator <= (const Point& a, const Point& b) { return a.x <= b.x && a.y <= b.y; }
    bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; }
    double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
    double Length(Vector A) { return sqrt(Dot(A, A)); }
    double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
    double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
    Vector VectorUnit(Vector x){ return x / Length(x);}
    Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x);}
    double angle(Vector v) { return atan2(v.y, v.x); }
    
    Point GetLineIntersection(Line A, Line B) {
        Vector u = A.p - B.p;
        double t = Cross(B.v, u) / Cross(A.v, B.v);
        return A.p + A.v*t;
    }
    double DisP(Point A,Point B) {
        return Length(B-A);
    }
    int LineCrossPolygon(Point& L1,Point& L2,Point* p,int n,Point* poly) {
        int m = 0;
        for(int i=0,j;i<n;i++) {
            if(dcmp(Cross(L1-p[i],L2-p[i])) >= 0) { poly[m++] = p[i]; continue; }
            j = (i-1+n)%n;
            if(dcmp(Cross(L1-p[j],L2-p[j])) > 0) poly[m++] = GetLineIntersection(Line(L1,L2-L1),Line(p[j],p[i]-p[j]));
            j = (i+1+n)%n;
            if(dcmp(Cross(L1-p[j],L2-p[j])) > 0) poly[m++] = GetLineIntersection(Line(L1,L2-L1),Line(p[j],p[i]-p[j]));
        }
        return m;
    }
    
    Line L[122];
    Point poly[3][124],p[140],q1,q2;
    int len[3];
    
    int main()
    {
        int i,j,pre,now,n;
        double r;
        while(scanf("%d%lf",&n,&r)!=EOF)
        {
            poly[0][0] = Point(-1000,-1000);
            poly[0][1] = Point(1000,-1000);
            poly[0][2] = Point(1000,1000);
            poly[0][3] = Point(-1000,1000);
            len[pre = 0] = 4;
            for(i=0;i<n;i++) p[i].input();
            for(i=0;i<n;i++) {
                now = pre^1;
                Vector nv = Normal(p[i]-p[(i+1)%n]);
                q1 = p[i] + nv*r; q2 = q1+p[(i+1)%n]-p[i];
                len[now] = LineCrossPolygon(q2,q1,poly[pre],len[pre],poly[now]);
                pre = now;
            }
            double Maxi = -Mod;
            for(i=0;i<len[now];i++)
                for(j=i;j<len[now];j++) {
                    if(dcmp(DisP(poly[now][i],poly[now][j])-Maxi) > 0) {
                        Maxi = DisP(poly[now][i],poly[now][j]);
                        q1 = poly[now][i], q2 = poly[now][j];
                    }
                }
            printf("%.6f %.6f %.6f %.6f
    ",q1.x,q1.y,q2.x,q2.y);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    秘密挤奶机(最大流,二分)
    伊基的故事 I
    多源汇最大流(最大流)
    无向树是二分图
    上下界可行流
    圆桌问题(最大流,二分图,网络流24题)
    双栈排序
    观光奶牛
    拜访奶牛
    愤怒的牛&数列分段II
  • 原文地址:https://www.cnblogs.com/whatbeg/p/4198431.html
Copyright © 2011-2022 走看看