zoukankan      html  css  js  c++  java
  • Caffe训练好的网络对图像分类

      对于训练好的Caffe 网络

      输入:彩色or灰度图片

      做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到0-1直接即可。                            

    #include <caffe/caffe.hpp>
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #include <iosfwd>
    #include <memory>
    #include <string>
    #include <utility>
    #include <vector>

    using namespace caffe;  // NOLINT(build/namespaces)
    using std::string;


    /* Pair (label, confidence) representing a prediction. */
    /* pair(标签,置信度)  预测值 */
    typedef std::pair<string, float> Prediction;
    /*  分类接口类 Classifier */
    class Classifier {
     public:
      Classifier(const string& model_file,
                 const string& trained_file,
                 const string& mean_file,
                 const string& label_file);


      std::vector<Prediction> Classify(const cv::Mat& img, int N = 4);   //分类,默认返回前4个预测值 数组


     private:
      void SetMean(const string& mean_file);


      std::vector<float> Predict(const cv::Mat& img);                    


      void WrapInputLayer(std::vector<cv::Mat>* input_channels);


      void Preprocess(const cv::Mat& img,
                      std::vector<cv::Mat>* input_channels);


     private:
      shared_ptr<Net<float> > net_;            
      cv::Size input_geometry_;                 
      int num_channels_;                          //网络通道数
      cv::Mat mean_;                              //均值图像
      std::vector<string> labels_;                //目标标签数组
    };

    以上定义了一个分类对象类Classifier 

    类的实现如下:

    Classifier::Classifier(const string& model_file,
                           const string& trained_file,
                           const string& mean_file,
                           const string& label_file) {
    #ifdef CPU_ONLY
      Caffe::set_mode(Caffe::CPU);
    #else
      Caffe::set_mode(Caffe::GPU);
    #endif


      /* Load the network. */
      net_.reset(new Net<float>(model_file, TEST));
      net_->CopyTrainedLayersFrom(trained_file);


      CHECK_EQ(net_->num_inputs() , 1) << "Network should have exactly one input.";
      CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";


      Blob<float>* input_layer = net_->input_blobs()[0];     //网络层模板 Blob
      num_channels_            = input_layer->channels();    //通道数
      CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels.";
      input_geometry_          = cv::Size(input_layer->width(), input_layer->height());


      /* Load the binaryproto mean file.加载均值文件 */
      SetMean(mean_file);


      /* Load labels. 加载分类标签文件*/
      std::ifstream labels(label_file.c_str());
      CHECK(labels) << "Unable to open labels file " << label_file;
      string line;
      while (std::getline(labels, line))
            labels_.push_back(string(line));


      Blob<float>* output_layer = net_->output_blobs()[0];
      CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension.";
    }


    static bool PairCompare(const std::pair<float, int>& lhs,
                            const std::pair<float, int>& rhs) {
      return lhs.first > rhs.first;
    }


    /* Return the indices of the top N values of vector v. */
    /* 返回数组v[] 最大值的前 N 个序号数组 */
    static std::vector<int> Argmax(const std::vector<float>& v, int N) {
      std::vector<std::pair<float, int> > pairs;
      for (size_t i = 0; i < v.size(); ++i)
           pairs.push_back(std::make_pair(v[i], i));


      std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);


      std::vector<int> result;
      for (int i = 0; i < N; ++i)
        result.push_back(pairs[i].second);
      return result;
    }


    /* Return the top N predictions. 分类并返回最大的前 N 个预测 */
    std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
      std::vector<float> output = Predict(img);


      std::vector<int> maxN = Argmax(output, N);
      std::vector<Prediction> predictions;
      for (int i = 0; i < N; ++i) {
        int idx = maxN[i];
        predictions.push_back(std::make_pair(labels_[idx], output[idx])); / [(标签,置信度),...]预测值数组
      }


      return predictions;
    }


    /* Load the mean file in binaryproto format. */
    void Classifier::SetMean(const string& mean_file) {
      BlobProto blob_proto;
      ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);


      /* Convert from BlobProto to Blob<float> */
      Blob<float> mean_blob;
      mean_blob.FromProto(blob_proto);
      CHECK_EQ(mean_blob.channels(), num_channels_)
        << "Number of channels of mean file doesn't match input layer.";


      /* The format of the mean file is planar 32-bit float BGR or grayscale. */
      std::vector<cv::Mat> channels;
      float* data = mean_blob.mutable_cpu_data();
      for (int i = 0; i < num_channels_; ++i) {
        /* Extract an individual channel. */
        cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
        channels.push_back(channel);
        data += mean_blob.height() * mean_blob.width();
      }


      /* Merge the separate channels into a single image. */
      cv::Mat mean;
      cv::merge(channels, mean);


      /* Compute the global mean pixel value and create a mean image
       * filled with this value. */
      cv::Scalar channel_mean = cv::mean(mean);
      mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
    }


    /*  分类 */
    std::vector<float> Classifier::Predict(const cv::Mat& img) {
      Blob<float>* input_layer = net_->input_blobs()[0];
      input_layer->Reshape(1, num_channels_,
                           input_geometry_.height, input_geometry_.width);
      /* Forward dimension change to all layers. */
      net_->Reshape();
      std::vector<cv::Mat> input_channels;
      WrapInputLayer(&input_channels);        

      Preprocess(img, &input_channels);       //数据预处理


      net_->ForwardPrefilled();              


      /* Copy the output layer to a std::vector */
      Blob<float>* output_layer = net_->output_blobs()[0];
      const float* begin = output_layer->cpu_data();
      const float* end = begin + output_layer->channels();
      return std::vector<float>(begin, end);
    }


    /* Wrap the input layer of the network in separate cv::Mat objects
     * (one per channel). This way we save one memcpy operation and we
     * don't need to rely on cudaMemcpy2D. The last preprocessing
     * operation will write the separate channels directly to the input
     * layer.
      */
    void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {


      Blob<float>* input_layer = net_->input_blobs()[0];


      int width  = input_layer->width();
      int height = input_layer->height();
      float* input_data = input_layer->mutable_cpu_data();
      for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
      }
    }
    //数据预处理
    void Classifier::Preprocess(const cv::Mat& img,
                                std::vector<cv::Mat>* input_channels) {
      /* Convert the input image to the input image format of the network. */
      cv::Mat sample;
      //通道数据根据设置进行转换
      if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, CV_BGR2GRAY);
      else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, CV_BGRA2GRAY);
      else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, CV_BGRA2BGR);
      else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, CV_GRAY2BGR);
      else
        sample = img;


      cv::Mat sample_resized;
      if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);
      else
        sample_resized = sample;


      cv::Mat sample_float;
      if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);     // 三通道(彩色)
      else
        sample_resized.convertTo(sample_float, CV_32FC1);     // 单通道    (灰度)


      cv::Mat sample_normalized;
      cv::subtract(sample_float, mean_, sample_normalized);


      /* This operation will write the separate BGR planes directly to the
       * input layer of the network because it is wrapped by the cv::Mat
       * objects in input_channels.
       此操作将数据 BGR 直接写入输入层对象input_channels */
      cv::split(sample_normalized, *input_channels);


      CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
            == net_->input_blobs()[0]->cpu_data())
        << "Input channels are not wrapping the input layer of the network.";
    }

    对以上代码做了一些简单的注释,需要说明的是分类后的返回结果默认置信度最大的前5个类型,

    对于分类对象的调用如下:

    //==============================================================
    //         main()
    //==============================================================


    int main(int argc, char** argv) {
      if (argc != 6) {
        std::cerr << "Usage: " << argv[0]
                  << " deploy.prototxt  network.caffemodel"
                  << " mean.binaryproto labels.txt img.jpg" << std::endl;
        return 1;
      }


      ::google::InitGoogleLogging(argv[0]);


      string model_file   = argv[1];
      string trained_file = argv[2];
      string mean_file    = argv[3];
      string label_file   = argv[4];
      Classifier classifier(model_file, trained_file, mean_file, label_file); //创建分类器


      string file = argv[5];


      std::cout << "---------- Prediction for "<< file << " ----------" << std::endl;


      cv::Mat img = cv::imread(file, -1);          //读取待分类图像
      CHECK(!img.empty()) << "Unable to decode image " << file;
      std::vector<Prediction> predictions = classifier.Classify(img);    //分类


      /* Print the top N predictions. 打印前N 个预测值*/
      for (size_t i = 0; i < predictions.size(); ++i) {
        Prediction p = predictions[i];
        std::cout << std::fixed << std::setprecision(4) << p.second << " - ""
                  << p.first << """ << std::endl;
      }
    }

  • 相关阅读:
    WebService到底是什么?(转)
    C# 页面抓取获取快递信息
    SQL Server ->> 条件筛选做法之 -- IN(VALUE1,VALUE2,...)与INNER JOIN STRING_SPLIT()性能对比
    SQL Server ->> MSDB.DBO.AGENT_DATETIME函数从整型转时间日期格式
    Windows ->> Windows Server 2012打开管理添加“我的电脑”桌面图标途径
    Windows ->> Windows下安装MSI程序遇到2503和2502错误
    SQL Server ->> DAC(Dedicated Administrator Connection)专用管理员连接
    SQL Server ->> 高可用与灾难恢复(HADR)技术之 -- Transaction Replication(事务复制)
    SQL Server ->> ColumnStore Index(列存储索引)
    SQL Server ->> 使用Azure Active Directory Authentication连接到Azure SQL Database
  • 原文地址:https://www.cnblogs.com/whowhoha/p/5844504.html
Copyright © 2011-2022 走看看