转载请注明出处:http://www.cnblogs.com/willnote/p/6746499.html
Anaconda安装
在清华大学 TUNA 镜像源选择对应的操作系统与所需的Python版本下载Anaconda安装包。Windows环境下的安装包直接执行.exe文件进行安装即可,Ubuntu环境下在终端执行
$ bash Anaconda2-4.3.1-Linux-x86_64.sh #Python 2.7版本
或者
$ bash Anaconda3-4.3.1-Linux-x86_64.sh #Python 3.5 版本
在安装的过程中,会询问安装路径,按回车即可。之后会询问是否将Anaconda安装路径加入到环境变量(.bashrc)中,输入yes,这样以后在终端中输入python即可直接进入Anaconda的Python版本(如果你的系统中之前安装过Python,自行选择yes or no)。安装成功后,会有当前用户根目录下生成一个anaconda2的文件夹,里面就是安装好的内容
查询安装信息
$ conda info
查询当前已经安装的库
$ conda list
安装库(***代表库名称)
$ conda install ***
更新库
$ conda update ***
Anaconda仓库镜像
官方下载更新工具包的速度很慢,所以继续添加清华大学 TUNA提供的Anaconda仓库镜像,在终端或cmd中输入如下命令进行添加
$ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
$ conda config --set show_channel_urls yes
$ conda install numpy #测试是否添加成功
之后会自动在用户根目录生成“.condarc”文件,Ubuntu环境下路径为~/.condarc,Windows环境下路径为C:用户your_user_name.condarc
channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
- defaults
show_channel_urls: yes
如果要删除镜像,直接删除“.condarc”文件即可
Tensorflow安装
在终端或cmd中输入以下命令搜索当前可用的tensorflow版本
$ anaconda search -t conda tensorflow
Using Anaconda API: https://api.anaconda.org
Run 'anaconda show <USER/PACKAGE>' to get more details:
Packages:
Name | Version | Package Types | Platforms
------------------------- | ------ | --------------- | ---------------
HCC/tensorflow | 1.0.0 | conda | linux-64
HCC/tensorflow-cpucompat | 1.0.0 | conda | linux-64
HCC/tensorflow-fma | 1.0.0 | conda | linux-64
SentientPrime/tensorflow | 0.6.0 | conda | osx-64
: TensorFlow helps the tensors flow
acellera/tensorflow-cuda | 0.12.1 | conda | linux-64
anaconda/tensorflow | 1.0.1 | conda | linux-64
anaconda/tensorflow-gpu | 1.0.1 | conda | linux-64
conda-forge/tensorflow | 1.0.0 | conda | linux-64, win-64, osx-64
: TensorFlow helps the tensors flow
creditx/tensorflow | 0.9.0 | conda | linux-64
: TensorFlow helps the tensors flow
derickl/tensorflow | 0.12.1 | conda | osx-64
dhirschfeld/tensorflow | 0.12.0rc0 | conda | win-64
dseuss/tensorflow | | conda | osx-64
guyanhua/tensorflow | 1.0.0 | conda | linux-64
ijstokes/tensorflow | 2017.03.03.1349 | conda, ipynb | linux-64
jjh_cio_testing/tensorflow | 1.0.1 | conda | linux-64
jjh_cio_testing/tensorflow-gpu | 1.0.1 | conda | linux-64
jjh_ppc64le/tensorflow | 1.0.1 | conda | linux-ppc64le
jjh_ppc64le/tensorflow-gpu | 1.0.1 | conda | linux-ppc64le
jjhelmus/tensorflow | 0.12.0rc0 | conda, pypi | linux-64, osx-64
: TensorFlow helps the tensors flow
jjhelmus/tensorflow-gpu | 1.0.1 | conda | linux-64
kevin-keraudren/tensorflow | 0.9.0 | conda | linux-64
lcls-rhel7/tensorflow | 0.12.1 | conda | linux-64
marta-sd/tensorflow | 1.0.1 | conda | linux-64
: TensorFlow helps the tensors flow
memex/tensorflow | 0.5.0 | conda | linux-64, osx-64
: TensorFlow helps the tensors flow
mhworth/tensorflow | 0.7.1 | conda | osx-64
: TensorFlow helps the tensors flow
miovision/tensorflow | 0.10.0.gpu | conda | linux-64, osx-64
msarahan/tensorflow | 1.0.0rc2 | conda | linux-64
mutirri/tensorflow | 0.10.0rc0 | conda | linux-64
mwojcikowski/tensorflow | 1.0.1 | conda | linux-64
rdonnelly/tensorflow | 0.9.0 | conda | linux-64
rdonnellyr/r-tensorflow | 0.4.0 | conda | osx-64
test_org_002/tensorflow | 0.10.0rc0 | conda |
Found 32 packages
选择一个较新的CPU或GPU版本,如jjh_cio_testing/tensorflow-gpu的1.0.1版本,输入如下命令查询安装命令
$ anaconda show jjh_cio_testing/tensorflow-gpu
Using Anaconda API: https://api.anaconda.org
Name: tensorflow-gpu
Summary:
Access: public
Package Types: conda
Versions:
+ 1.0.1
To install this package with conda run:
conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu
使用最后一行的提示命令进行安装
$ conda install --channel https://conda.anaconda.org/jjh_cio_testing tensorflow-gpu
Fetching package metadata .............
Solving package specifications: .
Package plan for installation in environment /home/will/anaconda2:
The following packages will be SUPERSEDED by a higher-priority channel:
tensorflow-gpu: 1.0.1-py27_4 https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free --> 1.0.1-py27_4 jjh_cio_testing
Proceed ([y]/n)?
conda会自动检测安装此版本的Tensorflow所依赖的库,如果你的Anaconda缺少这些依赖库,会提示你安装。因为我之前已经安装过了,所以这里只提示我安装Tensorflow。输入y并回车之后等待安装结束即可
- 可以选择次高版本的Tensorflow安装,因为最新版本可能清华 TUNA的仓库镜像库没有及时更新,而官方更新连接总是失败,我最开始选择了jjhelmus/tensorflow-gpu的1.0.1版本,其他依赖库清华 TUNA的仓库镜像有资源,而到最后jjhelmus/tensorflow-gpu版本的Tensorflow安装包总是下载不下来,尝试20多次之后换了一个1.0.0的版本,终于顺利安装成功
进入python,输入
import tensorflow as tf
如果没有报错说明安装成功。