zoukankan      html  css  js  c++  java
  • 一言难尽的数据标注

    LabelImg

    /resources/icons/app.png

    LabelImg is a graphical image annotation tool.

    It is written in Python and uses Qt for its graphical interface.

    Annotations are saved as XML files in PASCAL VOC format, the format used by ImageNet. Besides, it also supports YOLO format

    Demo Image

    Demo Image

    Watch a demo video

    Installation

    Build from source

    Linux/Ubuntu/Mac requires at least Python 2.6 and has been tested with PyQt 4.8. However, Python 3 or above and PyQt5are strongly recommended.

    Ubuntu Linux

    Python 2 + Qt4

    sudo apt-get install pyqt4-dev-tools
    sudo pip install lxml
    make qt4py2
    python labelImg.py
    python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

    Python 3 + Qt5 (Recommended)

    sudo apt-get install pyqt5-dev-tools
    sudo pip3 install -r requirements/requirements-linux-python3.txt
    make qt5py3
    python3 labelImg.py
    python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

    macOS

    Python 2 + Qt4

    brew install qt qt4
    brew install libxml2
    make qt4py2
    python labelImg.py
    python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

    Python 3 + Qt5 (Recommended)

    brew install qt  # Install qt-5.x.x by Homebrew
    brew install libxml2
    
    or using pip
    
    pip3 install pyqt5 lxml # Install qt and lxml by pip
    
    make qt5py3
    python3 labelImg.py
    python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

    Python 3 Virtualenv (Recommended)

    Virtualenv can avoid a lot of the QT / Python version issues

    brew install python3
    pip3 install pipenv
    pipenv --three # or pipenv install pyqt5 lxml
    pipenv run pip install pyqt5 lxml
    pipenv run make qt5py3
    python3 labelImg.py
    [Optional] rm -rf build dist; python setup.py py2app -A;mv "dist/labelImg.app" /Applications

    Note: The Last command gives you a nice .app file with a new SVG Icon in your /Applications folder. You can consider using the script: build-tools/build-for-macos.sh

    Windows

    Install PythonPyQt5 and install lxml.

    Open cmd and go to the labelImg directory

    pyrcc4 -o line/resources.py resources.qrc
    For pyqt5, pyrcc5 -o libs/resources.py resources qrc
    
    python labelImg.py
    python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

    Windows + Anaconda

    Download and install Anaconda (Python 3+)

    Open the Anaconda Prompt and go to the labelImg directory

    conda install pyqt=5
    pyrcc5 -o libs/resources.py resources.qrc
    python labelImg.py
    python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

    Get from PyPI but only python3.0 or above

    pip3 install labelImg
    labelImg
    labelImg [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

    Use Docker

    docker run -it 
    --user $(id -u) 
    -e DISPLAY=unix$DISPLAY 
    --workdir=$(pwd) 
    --volume="/home/$USER:/home/$USER" 
    --volume="/etc/group:/etc/group:ro" 
    --volume="/etc/passwd:/etc/passwd:ro" 
    --volume="/etc/shadow:/etc/shadow:ro" 
    --volume="/etc/sudoers.d:/etc/sudoers.d:ro" 
    -v /tmp/.X11-unix:/tmp/.X11-unix 
    tzutalin/py2qt4
    
    make qt4py2;./labelImg.py

    You can pull the image which has all of the installed and required dependencies. Watch a demo video

    Usage

    Steps (PascalVOC)

    1. Build and launch using the instructions above.
    2. Click 'Change default saved annotation folder' in Menu/File
    3. Click 'Open Dir'
    4. Click 'Create RectBox'
    5. Click and release left mouse to select a region to annotate the rect box
    6. You can use right mouse to drag the rect box to copy or move it

    The annotation will be saved to the folder you specify.

    You can refer to the below hotkeys to speed up your workflow.

    Steps (YOLO)

    1. In data/predefined_classes.txt define the list of classes that will be used for your training.
    2. Build and launch using the instructions above.
    3. Right below "Save" button in the toolbar, click "PascalVOC" button to switch to YOLO format.
    4. You may use Open/OpenDIR to process single or multiple images. When finished with a single image, click save.

    A txt file of YOLO format will be saved in the same folder as your image with same name. A file named "classes.txt" is saved to that folder too. "classes.txt" defines the list of class names that your YOLO label refers to.

    Note:

    • Your label list shall not change in the middle of processing a list of images. When you save an image, classes.txt will also get updated, while previous annotations will not be updated.
    • You shouldn't use "default class" function when saving to YOLO format, it will not be referred.
    • When saving as YOLO format, "difficult" flag is discarded.

    Create pre-defined classes

    You can edit the data/predefined_classes.txt to load pre-defined classes

    Hotkeys

    Ctrl + u Load all of the images from a directory
    Ctrl + r Change the default annotation target dir
    Ctrl + s Save
    Ctrl + d Copy the current label and rect box
    Space Flag the current image as verified
    w Create a rect box
    d Next image
    a Previous image
    del Delete the selected rect box
    Ctrl++ Zoom in
    Ctrl-- Zoom out
    ↑→↓← Keyboard arrows to move selected rect box

    Verify Image:

    When pressing space, the user can flag the image as verified, a green background will appear. This is used when creating a dataset automatically, the user can then through all the pictures and flag them instead of annotate them.

    Difficult:

    The difficult field is set to 1 indicates that the object has been annotated as "difficult", for example, an object which is clearly visible but difficult to recognize without substantial use of context. According to your deep neural network implementation, you can include or exclude difficult objects during training.

    How to contribute

    Send a pull request

    License

    Free software: MIT license

    Citation: Tzutalin. LabelImg. Git code (2015). https://github.com/tzutalin/labelImg

    Related

    1. ImageNet Utils to download image, create a label text for machine learning, etc
    2. Use Docker to run labelImg
    3. Generating the PASCAL VOC TFRecord files
    4. App Icon based on Icon by Nick Roach (GPL)
    5. Setup python development in vscode

    ref:https://github.com/tzutalin/labelImg

  • 相关阅读:
    【python入门到放弃】冒泡排序
    【python入门到放弃】变量、常量与注释
    环信和融云实现跨应用聊天
    swift里类方法和构造方法的使用来减少代码冗余提高开发效率
    git 常用命令 使用及iOS开发使用git管理项目步骤
    获取IPA包文件中的图片资源
    iOS11适配和iPhonex适配资料收集整理
    IOS 开发delegate和block的区别整理资料收集 (文章中内容有参考网络资料)
    IOS开发中集合操作 处理数据的 交集 并集 差集
    联系苹果人员的方式(转)
  • 原文地址:https://www.cnblogs.com/wind-chaser/p/10984136.html
Copyright © 2011-2022 走看看