【题解】 由乃(思博+欧拉定理+搜索)
集合这样的集合划分然后相等的问题就是NP问题,下界就是指数,所以要考虑一些性质。
我们现在只考虑(v=1000)的情况。由于所有序列中的数对(v)取膜,所以考虑当查询的区间大于长度等于(v-1)时,问题一定有解,因为此时要么有一个数出现了两次,要么出现了(0)。
考虑范围再缩小一点,假设查询长度是(len),则当
[{2^{len}-1over 2} > {(1+999)(999)over 2}
]
的时候一定有解,因为一定存在两个集合的和相同。虽然这两个集合有重复元素,不过将重复元素剔除后就构造出一组解。
解出来(len ge 14),所以当(len ge 14)的时候可以直接puts。
然后(len le 13)的情况直接双向搜索。复杂度$O(2n3^{7}+n log n) $ 修改操作相当于求(x^{3^k}),直接欧拉定理。
不要看了题解觉得很简单就去rush,先去看题...
//@winlere
#include<tr1/unordered_map>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std; typedef long long ll;
using namespace std::tr1;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e5+5;
int seg[maxn];
int data[maxn];
int f[21],F;
unordered_map<int,int> S;
int n,m,mod,phi,lit;
void dfs(const int&now,const int&s,const int&k){
if(now>lit){
if(S[s]==123) return;
if(k==1){S[s]|=1;}
if(k==2){S[s]|=2;}
if(k==3){S[s]=123;}
return;
}
dfs(now+1,s+f[now]+1,k|1);
dfs(now+1,s-f[now]-1,k|2);
dfs(now+1,s,k);
}
void dfs2(const int&now,const int&s,const int&k){
if(now<=lit){
if(S.find(-s)!=S.end()){
int g=S[-s];
if(g==123) F=1;
if(k==3) F=1;
if(k==1&&(g>>1&1)) F=1;
if(k==2&&(g&1)) F=1;
}
return;
}
if(F)return;
dfs2(now-1,s+f[now]+1,k|1);
dfs2(now-1,s-f[now]-1,k|2);
dfs2(now-1,s,k);
}
inline int getphi(int x){
int temp=x,ret=x;
for(int t=2;t*t<=temp;++t)
if(temp%t==0){
ret-=ret/t;
while(temp%t==0) temp/=t;
}
if(temp>1) ret-=ret/temp;
return ret;
}
inline void add(const int&pos,const int&tag){
for(int t=pos;t<=n+1;t+=t&-t) seg[t]+=tag;
}
inline int que(const int&pos){
int ret=0;
for(int t=pos;t>0;t-=t&-t) ret+=seg[t];
return ret;
}
inline int zhi(const int&base,const int&p){
int g=phi;
if(p*log(base)<=log(phi)) g=0;
int ret=1;
for(int t=p,b=base%phi;t;t>>=1,b=1ll*b*b%phi)
if(t&1) ret=1ll*ret*b%phi;
return ret+g;
}
inline int three(const int&base,const int&p){
int ret=1;
for(int t=zhi(3,p),b=base%mod;t;t>>=1,b=1ll*b*b%mod)
if(t&1) ret=1ll*ret*b%mod;
return ret;
}
int main(){
n=qr();m=qr();mod=qr();
phi=getphi(mod);
for(int t=1;t<=n;++t) data[t]=qr();
for(int t=1,t1,t2;t<=m;++t){
if(qr()==1){
t1=qr(); t2=qr();
if(t2-t1+1>13) puts("Yuno");
else{
lit=(t2-t1+1)>>1;
S.clear();
for(int t=t1,g;t<=t2;++t) data[t]=f[t-t1+1]=three(data[t],g=que(t))%mod,add(t,-g),add(t+1,g);
F=0;
dfs(1,0,0);
dfs2(t2-t1+1,0,0);
if(F) puts("Yuno");
else puts("Yuki");
}
}
else{
t1=qr(); t2=qr();
add(t1,1); add(t2+1,-1);
}
}
return 0;
}