zoukankan      html  css  js  c++  java
  • OpenCV:OpenCV中的 parallel_for 和opencv parallel_for_

            OpenCV使用OMP完成并行运算,在使用AdaBoost检测的时候,在cascadedetect.cpp 里面,大量使用

        parallel_for_(Range(0, stripCount), CascadeClassifierInvoker( *this, processingRectSize, stripSize, yStep, factor,candidatesVector, rejectLevels, levelWeights, false, currentMask, &mtx) );

    语句。

            策略对应的机制:

            CascadeClassifierInvoker继承自于 ParallelLoopBody ,实现parallel_for_( )语句。

                     class CascadeClassifierInvoker : public ParallelLoopBody 

      


           CV2.4.3中自带的calcOpticalFlowPyrLK函数也用parallel_for重写过了,之前我一直认为parallel_for就是用来并行计算的,之前也自己写了一些用parallel_for实现的算法。

          直到今天在opencv官网中看到别人的提问,才发现parallel_for实际上是serial loop (普通循环结构),而parallel_for_才是parallel loop(OpenCV官网answer),用以实现TBB或者OpenCL并行。

           参考文章:OpenCV中parallel_for 和 parallel_for_学习笔记 

     


            函数定义在parallel.cpp里面,定义为:

    /* ================================   parallel_for_  ================================ */
    
    void cv::parallel_for_(const cv::Range& range, const cv::ParallelLoopBody& body, double nstripes)
    {
    #ifdef CV_PARALLEL_FRAMEWORK
    
      if(numThreads != 0)
        {
            ProxyLoopBody pbody(body, range, nstripes);
            cv::Range stripeRange = pbody.stripeRange();
    
    #if defined HAVE_TBB
            tbb::parallel_for(tbb::blocked_range<int>(stripeRange.start, stripeRange.end), pbody);
    #elif defined HAVE_CSTRIPES
    
            parallel(MAX(0, numThreads))
            {
                int offset = stripeRange.start;
                int len = stripeRange.end - offset;
                Range r(offset + CPX_RANGE_START(len), offset + CPX_RANGE_END(len));
                pbody(r);
                barrier();
            }
    
    #elif defined HAVE_OPENMP
    
            #pragma omp parallel for schedule(dynamic)
            for (int i = stripeRange.start; i < stripeRange.end; ++i)
                pbody(Range(i, i + 1));
    
    #elif defined HAVE_GCD
    
            dispatch_queue_t concurrent_queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
            dispatch_apply_f(stripeRange.end - stripeRange.start, concurrent_queue, &pbody, block_function);
    
    #elif defined HAVE_CONCURRENCY
    
            if(!pplScheduler || pplScheduler->Id() == Concurrency::CurrentScheduler::Id())
            {
                Concurrency::parallel_for(stripeRange.start, stripeRange.end, pbody);
            }
            else
            {
                pplScheduler->Attach();
                Concurrency::parallel_for(stripeRange.start, stripeRange.end, pbody);
                Concurrency::CurrentScheduler::Detach();
            }
    
    #else
    
    #error You have hacked and compiling with unsupported parallel framework
    
    #endif
    
        }
        else
    
    #endif // CV_PARALLEL_FRAMEWORK
        {
            (void)nstripes;
            body(range);
        }
    }

    其中使用的:

    tbb::parallel_for(tbb::blocked_range<int>(stripeRange.start, stripeRange.end), pbody);
    使用TBB重写 parallel_for 完成使用TBB并行加速。



           

  • 相关阅读:
    为用户添加角色
    WCF、MongoDB
    文件分布式存储实现例程
    Redis的Replication(复制)
    Lucene热词显示并选择
    Lucene热词统计
    通过队列解决Lucene文件并发创建索引
    Lucene.net应用
    Lucene.net
    Redis
  • 原文地址:https://www.cnblogs.com/wishchin/p/9199969.html
Copyright © 2011-2022 走看看