zoukankan      html  css  js  c++  java
  • 读取log, 以及做成csv

    # coding:utf-8
    # make_msg_dict.py
    
    line_num = 0
    new_block_flag = False
    second_flag = False
    linux_resource_flag = False
    next_predict_flag = False
    
    second_line = ""
    
    threads_num = 0
    process_num = 0
    torch_threads_num = 0
    img_num = 0
    batch_size = 0
    
    msg_line_num = 0
    linux_resource = 0
    all_count = 0
    
    min_list = []
    avg_list = []
    max_list = []
    fps_list = []
    
    all_dict = {}
    msg_dict = {}
    other_count = 0
    
    gpu = 0
    gpu_memory = 0
    cpu = 0
    cpu_memory = 0
    
    log_file = "rt_t2_process_12-10_19-00.log"
    with open(log_file, 'r')as f:
        for i in f:
            line_num += 1
            # 回车行
            if i == "
    ":
                new_block_flag = False
                continue
            try:
                # 每行内容
                line_msg = i.split("INFO")[1].strip()
    
            except Exception as error:
                continue
    
            # INFO 空行
            if not line_msg:
                continue
    
            # 第一行
            if line_msg == "predict_start":
                second_flag = True
                next_predict_flag = False
                msg_dict = {}
                min_list = []
                avg_list = []
                max_list = []
                fps_list = []
                gpu = 0
                gpu_memory = 0
                cpu = 0
                cpu_memory = 0
    
                continue
    
            # 取第二行
            if second_flag:
                second_line = line_msg
                second_ret_list = second_line.replace(" ", '').split(",")
                # print(second_ret_list)
                judge_type = second_ret_list[0].split(":")[0]
                if judge_type == "process_num":
                    threads_num = -1
                    process_num = int(second_ret_list[0].split(":")[1])
                    msg_line_num = process_num * 5
                else:
                    process_num = -1
                    threads_num = int(second_ret_list[0].split(":")[1])
                    msg_line_num = threads_num * 5
    
                torch_threads_num = int(second_ret_list[1].split(":")[1])
                img_num = int(second_ret_list[2].split(":")[1])
                batch_size = int(second_ret_list[3].split(":")[1])
    
                second_flag = False
                continue
    
            # 取 predict_msg
            if msg_line_num > 0:
                msg_line_num -= 1
                if msg_line_num == 0:
                    linux_resource_flag = True
    
                    linux_resource = 17
                # predict time
                if ":" in line_msg:
                    line_msg_list = line_msg.replace(" ", '').split(":")
                    min_list.append(float(line_msg_list[1].split("/")[0]))
                    avg_list.append(float(line_msg_list[1].split("/")[1]))
                    max_list.append(float(line_msg_list[1].split("/")[2]))
                    continue
                if "=" in line_msg:
                    line_msg_list = line_msg.replace(" ", '').split("=")
                    if line_msg_list[0][-3:] == "fps":
                        fps_list.append(float(line_msg_list[1]))
                        continue
    
                continue
            # 拿到linux数据
            if linux_resource > 0:
                linux_resource -= 1
    
                if linux_resource == 0:
                    next_predict_flag = True
                    linux_resource_flag = False
    
                # print(line_msg)
                line_msg.strip()
                if line_msg.startswith("cpu utilization"):
                    if line_msg.count("/") == 1:
                        cpu = str(int(float(line_msg.split(" ")[2][:-1]))) + "%"
                        continue
                if line_msg.startswith("memory"):
                    if line_msg.count("/") == 1:
                        cpu_memory = str(round(float(line_msg.split(" ")[1][:-2]), 2) * 1000) + "MB"
                        continue
                if line_msg.startswith("GPU 0 memory_used"):
                    gpu_memory = str(round(float(line_msg.split(":")[1].split("/")[1].replace(" ", '')[:-1]), 2)) + "MB"
                    continue
                if line_msg.startswith("GPU 0 Utilization_Rates"):
                    gpu = str(int(float(line_msg.split(":")[1].split("/")[1].replace(" ", '')[:-1]))) + "%"
                    continue
    
    
    
            # 取predict下的东西
            if not linux_resource_flag and next_predict_flag:
                # print("计数")
                other_count += 1
                msg_dict = {
                    "Throughput": round(sum(fps_list), 0) * batch_size,
                    "Latency": "{} / {} / {}".format(
                        round(min(min_list) * 1000, 2),
                        round(sum(avg_list) / len(avg_list) * 1000, 2),
                        round(max(max_list) * 1000, 2),
                    ),
                    "gpu": gpu,
                    "gpu_memory": gpu_memory,
                    "cpu": cpu,
                    "cpu_memory": cpu_memory,
                }
                # 组合dict
                if threads_num != -1:
                    if all_dict.get(1):
                        if all_dict[1].get(threads_num):
                            if all_dict[1][threads_num].get(batch_size):
                                all_dict[1][threads_num][batch_size][torch_threads_num] = msg_dict
                            else:
                                all_dict[1][threads_num][batch_size] = {torch_threads_num: msg_dict}
                        else:
                            all_dict[1][threads_num] = {batch_size: {torch_threads_num: msg_dict}}
                    else:
                        all_dict[1] = {threads_num: {batch_size: {torch_threads_num: msg_dict}}}
                else:
    
                    if all_dict.get(process_num):
                        if all_dict[process_num].get(1):
                            if all_dict[process_num][1].get(batch_size):
                                all_dict[process_num][1][batch_size][torch_threads_num] = msg_dict
                            else:
                                all_dict[process_num][1][batch_size] = {torch_threads_num: msg_dict}
                        else:
                            all_dict[process_num][1] = {batch_size: {torch_threads_num: msg_dict}}
                    else:
                        all_dict[process_num] = {1: {batch_size: {torch_threads_num: msg_dict}}}
    
    
    print("other_count", other_count)
    print("all_dict", all_dict)
    
    # make csv
    # coding:utf-8
    # make_csv.py
    
    line_num = 0
    new_block_flag = False
    second_flag = False
    linux_resource_flag = False
    next_predict_flag = False
    
    second_line = ""
    
    threads_num = 0
    process_num = 0
    torch_threads_num = 0
    img_num = 0
    batch_size = 0
    
    msg_line_num = 0
    linux_resource = 0
    all_count = 0
    
    min_list = []
    avg_list = []
    max_list = []
    fps_list = []
    
    all_dict = {}
    msg_dict = {}
    other_count = 0
    
    gpu = 0
    gpu_memory = 0
    cpu = 0
    cpu_memory = 0
    
    import os
    log_dir_list = os.listdir("log_dir")
    for log_file in log_dir_list:
        all_dict = {}
        other_count = 0
        with open("log_dir/{}".format(log_file), 'r')as f:
            for i in f:
                line_num += 1
                # 回车行
                if i == "
    ":
                    new_block_flag = False
                    continue
                try:
                    # 每行内容
                    line_msg = i.split("INFO")[1].strip()
    
                except Exception as error:
                    continue
    
                # INFO 空行
                if not line_msg:
                    continue
    
                # 第一行
                if line_msg == "predict_start":
                    second_flag = True
                    next_predict_flag = False
                    msg_dict = {}
                    min_list = []
                    avg_list = []
                    max_list = []
                    fps_list = []
                    gpu = 0
                    gpu_memory = 0
                    cpu = 0
                    cpu_memory = 0
    
                    continue
    
                # 取第二行
                if second_flag:
                    second_line = line_msg
                    second_ret_list = second_line.replace(" ", '').split(",")
                    # print(second_ret_list)
                    judge_type = second_ret_list[0].split(":")[0]
                    if judge_type == "process_num":
                        threads_num = -1
                        process_num = int(second_ret_list[0].split(":")[1])
                        msg_line_num = process_num * 5
                    else:
                        process_num = -1
                        threads_num = int(second_ret_list[0].split(":")[1])
                        msg_line_num = threads_num * 5
    
                    torch_threads_num = int(second_ret_list[1].split(":")[1])
                    img_num = int(second_ret_list[2].split(":")[1])
                    batch_size = int(second_ret_list[3].split(":")[1])
    
                    second_flag = False
                    continue
    
                # 取 predict_msg
                if msg_line_num > 0:
                    msg_line_num -= 1
                    if msg_line_num == 0:
                        linux_resource_flag = True
    
                        linux_resource = 17
                    # predict time
                    if ":" in line_msg:
                        line_msg_list = line_msg.replace(" ", '').split(":")
                        min_list.append(float(line_msg_list[1].split("/")[0]))
                        avg_list.append(float(line_msg_list[1].split("/")[1]))
                        max_list.append(float(line_msg_list[1].split("/")[2]))
                        continue
                    if "=" in line_msg:
                        line_msg_list = line_msg.replace(" ", '').split("=")
                        if line_msg_list[0][-3:] == "fps":
                            fps_list.append(float(line_msg_list[1]))
                            continue
    
                    continue
                # 拿到linux数据
                if linux_resource > 0:
                    linux_resource -= 1
    
                    if linux_resource == 0:
                        next_predict_flag = True
                        linux_resource_flag = False
    
                    # print(line_msg)
                    line_msg.strip()
                    if line_msg.startswith("cpu utilization"):
                        if line_msg.count("/") == 1:
                            cpu = str(int(float(line_msg.split(" ")[2][:-1]))) + "%"
                            continue
                    if line_msg.startswith("memory"):
                        if line_msg.count("/") == 1:
                            cpu_memory = str(round(float(line_msg.split(" ")[1][:-2]), 2) * 1000) + "MB"
                            continue
                    if line_msg.startswith("GPU 0 memory_used"):
                        gpu_memory = str(round(float(line_msg.split(":")[1].split("/")[1].replace(" ", '')[:-1]), 2)) + "MB"
                        continue
                    if line_msg.startswith("GPU 0 Utilization_Rates"):
                        gpu = str(int(float(line_msg.split(":")[1].split("/")[1].replace(" ", '')[:-1]))) + "%"
                        continue
    
    
    
                # 取predict下的东西
                if not linux_resource_flag and next_predict_flag:
                    # print("计数")
                    other_count += 1
                    msg_dict = {
                        "Throughput": round(sum(fps_list), 0) * batch_size,
                        "Latency": "{} / {} / {}".format(
                            round(min(min_list) * 1000, 2),
                            round(sum(avg_list) / len(avg_list) * 1000, 2),
                            round(max(max_list) * 1000, 2),
                        ),
                        "gpu": gpu,
                        "gpu_memory": gpu_memory,
                        "cpu": cpu,
                        "cpu_memory": cpu_memory,
                    }
                    # 组合dict
                    if threads_num != -1:
                        if all_dict.get(1):
                            if all_dict[1].get(threads_num):
                                if all_dict[1][threads_num].get(batch_size):
                                    all_dict[1][threads_num][batch_size][torch_threads_num] = msg_dict
                                else:
                                    all_dict[1][threads_num][batch_size] = {torch_threads_num: msg_dict}
                            else:
                                all_dict[1][threads_num] = {batch_size: {torch_threads_num: msg_dict}}
                        else:
                            all_dict[1] = {threads_num: {batch_size: {torch_threads_num: msg_dict}}}
                    else:
    
                        if all_dict.get(process_num):
                            if all_dict[process_num].get(1):
                                if all_dict[process_num][1].get(batch_size):
                                    all_dict[process_num][1][batch_size][torch_threads_num] = msg_dict
                                else:
                                    all_dict[process_num][1][batch_size] = {torch_threads_num: msg_dict}
                            else:
                                all_dict[process_num][1] = {batch_size: {torch_threads_num: msg_dict}}
                        else:
                            all_dict[process_num] = {1: {batch_size: {torch_threads_num: msg_dict}}}
    
    
        print("other_count", other_count)
        # print("all_dict", all_dict)
    
        # make csv
        cvs_str = ''
        all_cvs_str = ''
        threads_count = 0
        for process, threads_num_dict in all_dict.items():
            cvs_str = str(process) + ","
    
            for threads_num, batch_size_dict in threads_num_dict.items():
                th_before_cvs_str = cvs_str
                cvs_str += str(threads_num) + ","
    
                for batch_size, torch_threads_num_dict in batch_size_dict.items():
                    b_before_cvs_str = cvs_str
                    cvs_str += str(batch_size) + ","
                    for torch_threads_num, msg_dict in torch_threads_num_dict.items():
                        t_before_cvs_str = cvs_str
                        cvs_str += str(torch_threads_num) + ","
    
                        msg_str = ",".join([str(i) for i in list(msg_dict.values())])
                        cvs_str += str(msg_str)
                        all_cvs_str += cvs_str + "
    "
                        cvs_str = t_before_cvs_str
    
                    cvs_str = b_before_cvs_str
    
                cvs_str = th_before_cvs_str
    
        print(all_cvs_str.count("
    "))
        with open("{}.csv".format(log_file), 'w') as f:
            f.write(all_cvs_str)
        all_cvs_str = ""
  • 相关阅读:
    Nginx 配置指令的执行顺序(一)
    缘起 --转
    Nginx 变量漫谈(八)
    Nginx 变量漫谈(七)
    Nginx 变量漫谈(六)
    Windows批量添加防火墙例外端口
    Neo4j 的一些使用心得
    一文教你用 Neo4j 快速构建明星关系图谱
    GemFire 入门篇1:GemFire 是什么?
    数据结构(逻辑结构,物理结构,特点)
  • 原文地址:https://www.cnblogs.com/wjw6692353/p/14118405.html
Copyright © 2011-2022 走看看