zoukankan      html  css  js  c++  java
  • BZOJ 3513: [MUTC2013]idiots FFT

    正难则反,首先概率就是(frac{合法的方案数}{总的方案数})=(frac{总的方案数-不合法的方案数}{总的方案数})

    统计不合法的方案数只需要 两个较短的边的长度和(le)较长的边,用t[i]表示长度大于等于i的木棍的数量,f[i]为长度为i的木棍的数量,g[i]表示选出两根木棍组成和为i的方案数,很明显g等于f卷上f,

    注意自己不能卷自己,直接在最后让自己卷自己的方案数减去就行了。

    然后(displaystyle sum frac{g[i]}{2} imes t[i])就是不合法的方案数了,除2是因为 先选木棍1后选木棍2 和 先选木棍2后选木棍1 是一样的。

    bzoj数据比较毒瘤,NTT超时了,得用FFT才能过…

    时间复杂度O(n log n).

    #include<bits/stdc++.h>
    #define DB double
    #define LL long long
    #define AK 0
    #define IOI ;
    using namespace std;
    int T, n, x, maxx, lim;
    LL ans, tot;
    const int N = 400010;
    const DB PI = acos(-1);
    int r[N], t[N];
    LL g[N];//f一根的长度为i的方案数  g两根组成i的方案数 t一根长度大于等于i的方案数
    inline int read() 
    {
    	int res = 0; char ch = getchar(); bool XX = false;
    	for (; !isdigit(ch); ch = getchar())(ch == '-') && (XX = true);
    	for (; isdigit(ch); ch = getchar())res = (res << 3) + (res << 1) + (ch ^ 48);
    	return XX ? -res : res;
    }
    struct xu 
    {
    	DB x, y;
    	xu(DB X = 0, DB Y = 0) {x = X, y = Y;}
    	friend xu operator +(const xu &a, const xu &b)
    	{return (xu) {a.x + b.x, a.y + b.y};}
    	friend xu operator -(const xu &a, const xu &b)
    	{return (xu) {a.x - b.x, a.y - b.y};}
    	friend xu operator *(const xu &a, const xu &b)
    	{return (xu) {a.x*b.x - a.y*b.y, a.x*b.y + a.y*b.x};}
    } f[N];
    void FFT(xu *A, int lim, int opt) 
    {
    	for (int i = 0; i < lim; ++i)
    		r[i] = (r[i >> 1] >> 1) | ((i & 1) ? (lim >> 1) : 0);
    	for (int i = 0; i < lim; ++i)
    		if (i < r[i])swap(A[i], A[r[i]]);
    	int len;
    	xu wn, w, x, y;
    	for (int mid = 1; mid < lim; mid <<= 1) 
    	{
    		len = mid << 1;
    		wn = (xu) {cos(PI / mid), opt*sin(PI / mid)};
    		for (int j = 0; j < lim; j += len) 
    		{
    			w = (xu) {1, 0};
    			for (int k = j; k < j + mid; ++k, w = w * wn) 
    			{
    				x = A[k]; y = A[k + mid] * w;
    				A[k] = x + y; A[k + mid] = x - y;
    			}
    		}
    	}
    }
    void YYch() 
    {
    	for (int i = 0; i <= lim; ++i)f[i] = g[i] = t[i] = 0;
    	maxx = 0; lim = 1; ans = tot = 0;
    }
    inline void treAKer() 
    {
    	YYch();
    	cin >> n;
    	for (int i = 1; i <= n; ++i) 
    	{
    		maxx = max(maxx, x = read());
    		f[x].x++; t[x]++; g[x << 1]--;
    	}
    	for (int i = maxx; i >= 1; --i)t[i] += t[i + 1];
    	while (lim <= (maxx << 1))lim <<= 1;
    	FFT(f, lim, 1);
    	for (int i = 0; i < lim; ++i)f[i] = f[i] * f[i];
    	FFT(f, lim, -1);
    	for (int i = 0; i < lim; ++i)g[i] += (int)(f[i].x / lim + 0.5);
    	tot = (LL)n * (n - 1) * (n - 2) / 6;
    	for (int i = 0; i < lim; ++i)ans += (g[i] >> 1) * t[i];
    	printf("%.7f
    ", (double)(tot - ans) / tot);
    }
    int main() 
    {
    	cin >> T;
    	while (T--)treAKer();
    	return AK IOI;
    }
    
  • 相关阅读:
    PAT Basic 1001
    PAT基础6-11
    PAT基础6-12
    PAT基础6-10
    修改正在进行遍历的列表
    使用管道和cronolog切割日志
    python logging模块
    python实现广度优先搜索和深度优先搜索
    多继承下的super()指向的不一定是直接父类
    python3 pandas DataFrame常见用法
  • 原文地址:https://www.cnblogs.com/wljss/p/12006529.html
Copyright © 2011-2022 走看看