zoukankan      html  css  js  c++  java
  • caffe 学习(1) —— Classification: Instant Recognition with Caffe

    学习地址http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynb

    1.安装matlabplotlib:

    sudo apt-get install python-matplotlib

    2. 安装google test, automake, google proto buffer

    ./autogen.sh: 43: autoreconf: not found
    是因为没有安装automake 工具, 用下面的命令安装好就可以了。

    sudo apt-get install autoconf automake libtool
     
     
    proto buffer安装时遇到问题如下
    。。。
    1. make[3]: *** [src/gtest.lo] Error 1  
    2. make[3]: Leaving directory `/home/sisinc/Desktop/protobuf-2.4.1/gtest'  
    3. make[2]: *** [check-local] Error 2  
    4. make[2]: Leaving directory `/home/sisinc/Desktop/protobuf-2.4.1'  
    5. make[1]: *** [check-am] Error 2  
    6. make[1]: Leaving directory `/home/sisinc/Desktop/protobuf-2.4.1' 

    解决办法:安装最新版本gtest

    安装gtest时稍微修改一下travis.sh文件,运行它即可。修改好的文件如下

    #!/usr/bin/env sh
    set -evx
    env | sort
    
    mkdir build || true
    mkdir build/$GTEST_TARGET || true
    cd build/$GTEST_TARGET
    cmake -D gtest_build_samples=ON 
          -D gmock_build_samples=ON 
          -D gtest_build_tests=ON 
          -D gmock_build_tests=ON 
          -D CMAKE_CXX_FLAGS=$CXX_FLAGS 
          ../$GTEST_TARGET
    make
    make test
    

     安装proto buffer:

    sudo sh ./autogen.sh
    make
    sudo make check
    sudo make install
    

     默认是安装在“/usr/local/lib”下的,在有些平台/usr/local/lib不是默认的LD_LIBRARY_PATH变量里面,可以在通过如下命令改变安装目录

    $ ./configure --prefix=/usr

    当看到类似下面的文字,说明protobuf基本安装完成

    ============================================================================
    Testsuite summary for Protocol Buffers 3.0.0-beta-2
    ============================================================================
    # TOTAL: 6
    # PASS:  6
    # SKIP:  0
    # XFAIL: 0
    # FAIL:  0
    # XPASS: 0
    # ERROR: 0
    ============================================================================

    安装protobuf的Python支持

    cd python # 位于protobuf下
    sudo python setup.py install

     3. can not find module skimage.io错误,解决办法

    安装skimage.io: sudo apt-get install python-sklearn python-skimage python-h5py

    4.学习代码

    # set up Python envirionment: numpy for numerical routines, and matplotlib for plotting
    import numpy as np
    import matplotlib.pyplot as plt
    #display plots in this notebook 
    # %matplotlib inline
    
    # set display defaults
    plt.rcParams['figure.figsize'] = (10, 10)	#large images
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'	#use grayscale output rather than a (potentiallly misleading) color heatmap
    
    # load caffe
    # the caffe module needs to be on the Python path
    import sys
    caffe_root='../'
    sys.path.insert(0, caffe_root + 'python')
    
    import caffe
    
    import os
    if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):
    	print 'Caffenet found.'
    else:
    	print 'Downloading pre-trained CaffeNet model...'
    	#../scripts/download_model_binary.py ../models/bvlc_reference_caffenet
    
    caffe.set_mode_cpu()
    
    model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
    model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
    
    net = caffe.Net(model_def,	# defines the structure of the model
    	model_weights,	# contains the trained weights
    	caffe.TEST)	# use test mode
    
    # load the mean ImageNet Image (as distributed with caffe) for subtraction
    mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
    mu = mu.mean(1).mean(1)	# average over pixels to obtain the mean (BGR) pixel values
    print 'mean-subtracted values:', zip('BGR', mu)
    
    # create transformer for the imput called 'data'
    transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
    
    transformer.set_transpose('data', (2, 0, 1)) # move image channels to outermost dimension
    transformer.set_mean('data', mu)
    transformer.set_raw_scale('data', 255)
    transformer.set_channel_swap('data', (2, 1, 0))	# swap channels from RGB to BGR
    
    net.blobs['data'].reshape(50,	# batch size
    	3,	# 3-channel (BGR) images
    	227, 227)	# image size is 227*227
    
    image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
    transformed_image = transformer.preprocess('data', image)
    plt.imshow(image)
    plt.show()
    
    # copy the image data into the memory allocated for the net
    net.blobs['data'].data[...]=transformed_image
    
    ### perform calssification
    output = net.forward()
    
    output_prob = output['prob'][0] # the output probability vector for the first image in the batch
    
    print 'predicted class is:', output_prob.argmax()
    
    # load ImageNet labels
    labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
    if not os.path.exists(labels_file):
    	#!../data/ilsvrc12/get_ilsvrc_aux.sh
    	print 'exetute the bash file above'
    
    labels = np.loadtxt(labels_file, str, delimiter='	')
    
    print 'output label:', labels[output_prob.argmax()]
    
    #sort top five predictions from softmax output
    top_inds = output_prob.argsort()[::-1][:5] # reverse sort and take five largest items
    print 'probabilities and labels:', 
    zip(output_prob[top_inds], labels[top_inds])
    
    # %timeit net.forward()
    
    # caffe.set_device(0)
    caffe.set_mode_gpu()
    net.forward()
    # %timeit net.forward()
    
    for layer_name, blob in net.blobs.iteritems():
    	print layer_name + '	' + str(blob.data.shape)
    
    for layer_name, param in net.params.iteritems():
    	print layer_name + '	' + str(param[0].data.shape), str(param[1].data.shape)
    
    def vis_square(data):
    	"""Take an array of shape (n, height, width) or (n, height, width, 3)
    	and visulaize each (height, widht) thing in a grid of size approx.sqrt(n) by sqrt(n)"""
    	
    	# normalize data for display
    	data = (data - data.min())/(data.max() - data.min())
    	
    	# force the number of filters to be square
    	n = int(np.ceil(np.sqrt(data.shape[0])))
    	padding = (((0, n**2 - data.shape[0]),
    		(0, 1), (0, 1))	# add some space between filters
    		+ ((0, 0),) * (data.ndim - 3)) #don't pad the last dimension (if there is one)
    	data = np.pad(data, padding, mode='constant', constant_values=1)
    
    	# tile the filters into an image
    	data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
    	data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    	
    	plt.imshow(data); plt.axis('off')
    	plt.show()
    
    filters = net.params['conv1'][0].data
    vis_square(filters.transpose(0, 2, 3, 1))
    
    feat = net.blobs['conv1'].data[0, :36]
    vis_square(feat)
    
    feat = net.blobs['pool5'].data[0]
    vis_square(feat)
    
    feat = net.blobs['fc6'].data[0]
    plt.subplot(2, 1, 1)
    plt.plot(feat.flat)
    plt.subplot(2, 1, 2)
    _=plt.hist(feat.flat[feat.flat > 0], bins=100)
    plt.show()
    

    命令行下root用户运行python class_and_plot.py可以获得正确输出结果。

     

    完成,继续努力!

    千里之行,始于足下~
  • 相关阅读:
    互联网思维(1)
    互联网思维
    WLAN和WIFI的区别
    ping操作
    一篇关于正则表达式的小结
    javascript正则表达式
    为什么原型继承很重要 – SegmentFault
    JS面向对象基础讲解(工厂模式、构造函数模式、原型模式、混合模式、动态原型
    【转】前端开发文档规范
    我的第一篇博文
  • 原文地址:https://www.cnblogs.com/wm123/p/5454036.html
Copyright © 2011-2022 走看看