题意:
有一个无向连通图,支持三个操作:
1 x y d : 新建一条x和y的无向边,长度为d
2 x y :删除x和y之间的无向边
3 x y :询问x到y的所有路径中(可以绕环)最短的是多少(路径长度是经过所有边的异或)
n,m,q<=2e5
分析:
如果没有加边和删边操作,那么就是个经典的线性基问题
我们可以先弄出一个树,然后非树边就形成环,把环丢进线性基就可以了
现在有了加边和删边操作,我们可以考虑每条边的存活时间,对这个时间进行cdq分治,那么就只有加边没有删边了
然后再离线处理询问即可
可以用线段树实现更加简单
具体实现的时候,加边操作即是加了一些边到并查集里面,所以退出时撤销掉就行了
至于base,直接拿数组存下来,覆盖即可
时间复杂度O(nlog^2n)