1、修改graphviz配置文件
<dir>C:WINDOWSFonts</dir>
更改为 <dir>~/.fonts</dir>
2、将决策树dot_data文件保存下来
from sklearn import tree from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split import pandas as pd wine = load_wine() Xtrain, Xtest, Ytrain, Ytest = train_test_split(wine.data,wine.target,test_size=0.3) clf = tree.DecisionTreeClassifier(criterion="entropy") clf = clf.fit(Xtrain, Ytrain) score = clf.score(Xtest, Ytest) #返回预测的准确度accuracy score:0.94444444444444442 feature_name = ['酒精','苹果酸','灰','灰的碱性','镁','总酚','类黄酮','非黄烷类酚类','花青素','颜色强度','色调','od280/od315稀释葡萄酒','脯氨酸'] import graphviz dot_data = tree.export_graphviz(clf, out_file=".Tree.dot" ,feature_names = feature_name ,class_names=["琴酒","雪莉","贝尔摩德"] ,filled=True ,rounded=True )
生成相应的dot文件如下:
cmd:
切换到相应目录
dot -Tjpg Tree.dot -o tree.jpg
3、dot_data文件格式转换
查看保存在本地的 dot_data.dot 可发现,其默认字体 fontname=helvetica,只需将字体修改为支持的中文字体即可,通过正则表达式实现替换。
import re # 打开 dot_data.dot,修改 fontname="支持的中文字体" f = open("./Tree.dot", "r+", encoding="utf-8") open('./Tree_utf8.dot', 'w', encoding="utf-8").write(re.sub(r'fontname=helvetica', 'fontname="Microsoft YaHei"', f.read())) f.close()
cmd:
jpg:
dot -Tjpg Tree_utf8.dot -o tree1.jpg
pdf:
dot -Tjpg Tree_utf8.dot -o tree2.pdf