zoukankan      html  css  js  c++  java
  • 3D-LiDAR

    3D-LiDAR

    结合光学+激光扫描+数据处理技术,实现对人和物体的无盲点检测。

    利用专有光学技术实现高精度,高分辨率三维扫描。

    到目前为止,传感器只能准确地检测出物体的存在,而且很难感知目标的大小和形状。为了提高精度,必须增加激光器的数量,这就产生了激光束之间出现盲点的新问题。将其专有的光学技术应用于这些技术挑战,并创建了一个广域3D激光雷达,仅使用一束具有高扫描精度、高分辨率和无盲点的激光。

    高精度,广域扫描能力。专有激光投影/接收技术+广域扫描技术。

    三维激光雷达发射激光搜索一个区域的对象,并测量一个对象所处的距离。使用TOF(飞行时间)测量距离,TOF是投射的激光从物体反射并返回传感器所需的时间。通过激光反射时间的微小差异获得三维图像,使得以10fps的速度进行实时测量成为可能。光的反射强度也被记录下来。

     专有的激光投影/接收和广域扫描技术可实现最大水平120度的探测半径。用24条激光垂直线获得了较高的垂直分辨率。广域扫描技术使无盲点的高精度数据无需行间距即可进行远距离扫描成为可能。探测范围从50米到人,100米到车(带反射器),最大范围200米。

     3D LiDAR scan illustration. The seamless scan leaves no spaces between spots.

    实时三维数据采集,运动检测/行为分析/形状识别技术

    三维激光雷达不仅可以区分形状和物体,而且可以区分运动物体。这意味着可以获取城市中移动的人或车辆的数据。通过10fps的实时检测,甚至可以测量一些人之间的空间和他们的步行速度。从累积的行为数据中,可以确定行人和车辆的行为模式,预测无意的乱穿马路或发现可疑活动。三维测量的另一个特点是能够在三维环境中从正面、鸟瞰和其他任何角度看到数据。除了从不同角度获取移动人员和车辆的数据外,还可以从地理和建筑物等结构获取反馈。

     三维激光雷达在各个领域的未来应用

    通过传感器融合增加功能。自动驾驶汽车开发中的实时检测。

    实时检测能力是自动驾驶汽车发展的完美匹配。自动驾驶车辆必须能够探测到自己以及附近其他车辆、行人和障碍物的位置。三维激光雷达与陀螺传感器(用于稳定)和GPS(用于定位数据)相连接,可以获取非常详细的三维实时数据,检测行人以确保安全,并为自动驾驶创建高精度地图。它还可以区分道路线和沥青。

     夜间自动驾驶时,检测系统不得受前照灯、路灯和环境光的影响,并能准确检测车辆和行人。在Konica Minolta的高精度同轴光学技术中,从3D激光雷达发射的光沿着相同的路径返回。因此,阳光、头灯和环境光线都被尽可能的过滤掉,使其成为安全等户外使用的高品质选择。通过测量返回光的强度,它可以区分道路线和沥青等主题。

     通过数据分析更大的可能性。体育/市场营销中的行为分析。

    行为分析在广域安全、市场营销和体育运动中的应用是值得期待的。例如,在安全方面,可以建立更高精度的安全系统,根据大小和行为分析数据来区分人和动物之间的差异。在市场营销中,商店里的货架可以被监控,以识别受欢迎的产品。在体育运动中,在足球场同时使用几个三维激光雷达可以实时跟踪球员在广阔场地上的位置。可以收集每个运动员的跑步速度和距离的详细数据,并创建他们运动区域的热图,以可能有助于制定更有效的策略。

     在需要大面积测量的领域中的应用。用于三维形状测量的装运/施工。

    三维形状测量可以一次监测大面积,使之成为土木工程或建筑工地安全的最佳选择。在拥有大型财产的船运仓库和土木工程工地,货物和材料不断流动。形状测量可以识别危险品,防止盗窃。在土木工程和建筑工地,可以跟踪进度,预测危险或需要先发制人的检查。

     帮助解决客户问题,通过SDK提供和解决方案建议。

    为了提高三维激光雷达测量数据的分析能力,提供了一套软件开发工具和支持,可以根据使用情况简化和缩短实现过程。通过小型化和远距离测量的进一步应用正在开发中,通过传感器融合的增值来进一步扩大用途,将有助于解决各种社会和客户问题。

  • 相关阅读:
    java 日志框架的选择Log4j->SLF4j->Logback
    linux上的常用命令
    Zookeeper配置Kafka
    分布式日志收集框架Flume
    Spark Streaming简介
    Spring Cloud学习笔记之微服务架构
    IntelliJ IDEA学习记录
    firefox插件-自动化测试工具-selenium IDE
    大数据01
    使用java开发spark的wordcount程序(多种实现)
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/12955224.html
Copyright © 2011-2022 走看看