zoukankan      html  css  js  c++  java
  • TVM性能评估分析(六)

    TVM性能评估分析(六)

     

     Figure 1.  The workflow of development PC, compile, deploy to the device, test, then modify the codes again to see whether it accelerates.

     

     Figure 2.   The Android APP takes shared library as input and runs compiled functions on the mobile phone. 

     

     Figure 3.  Build TVM functions and NDArrays on a remote device. The ability to cross-compile to different platforms makes it easy to develop on one platform and test on another.

     

     Figure 4.  The instruction to build for your Android device. Once the APK is built, sign it using apps/android_rpc/dev_tools and install it on the phone. 

     

     Figure 5.  The NNVM compiler support of TVM stack, we can now directly compile descriptions from deep learning frameworks and compile them to bare metal code that runs on AMD GPUs.

     

     Figure 6.  With ROCm backend, the generic workflow 

     

     Figure 7.   The ONNX library to load the ONNX model into the Protocol buffer object. 

     

     Figure 8.  An end to end compilation pipeline from front-end deep learning frameworks to bare metal hardwares.

     

    Figure 9.  Typical workflow of NNVM Compiler

     

     Figure 10.  Separation of Optimization and Deployment

     

     Figure 11.  Time Cost of Inference on K80

     

     Figure 12.  The cost of inference on Raspberry PI

    人工智能芯片与自动驾驶
  • 相关阅读:
    HFUT 1356.转啊转(安徽省2016“京胜杯”程序设计大赛 E)
    HFUT 1354.砝码称重(安徽省2016“京胜杯”程序设计大赛 A)
    AOJ 331.汉诺塔
    AOJ 763.过河卒
    AOJ 762.分数数列
    AOJ 761.Fibonacci序列
    AOJ 760.尾数相等的数
    POJ 1035.Spell checker
    POJ 2299.Ultra-QuickSort
    POJ 2503.Babelfish
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14826997.html
Copyright © 2011-2022 走看看