zoukankan      html  css  js  c++  java
  • TVM性能评估分析(六)

    TVM性能评估分析(六)

     

     Figure 1.  The workflow of development PC, compile, deploy to the device, test, then modify the codes again to see whether it accelerates.

     

     Figure 2.   The Android APP takes shared library as input and runs compiled functions on the mobile phone. 

     

     Figure 3.  Build TVM functions and NDArrays on a remote device. The ability to cross-compile to different platforms makes it easy to develop on one platform and test on another.

     

     Figure 4.  The instruction to build for your Android device. Once the APK is built, sign it using apps/android_rpc/dev_tools and install it on the phone. 

     

     Figure 5.  The NNVM compiler support of TVM stack, we can now directly compile descriptions from deep learning frameworks and compile them to bare metal code that runs on AMD GPUs.

     

     Figure 6.  With ROCm backend, the generic workflow 

     

     Figure 7.   The ONNX library to load the ONNX model into the Protocol buffer object. 

     

     Figure 8.  An end to end compilation pipeline from front-end deep learning frameworks to bare metal hardwares.

     

    Figure 9.  Typical workflow of NNVM Compiler

     

     Figure 10.  Separation of Optimization and Deployment

     

     Figure 11.  Time Cost of Inference on K80

     

     Figure 12.  The cost of inference on Raspberry PI

    人工智能芯片与自动驾驶
  • 相关阅读:
    实现一个简单的ConnectionPool
    并发连接MySQL
    C#里面滥用String造成的性能问题
    String.IndexOf
    C#代码中插入X86汇编
    正确理解Handle对象
    orleans发送广播消息
    log日志方法
    PHP 批量插入数据
    逻辑漏洞小结之SRC篇
  • 原文地址:https://www.cnblogs.com/wujianming-110117/p/14826997.html
Copyright © 2011-2022 走看看