zoukankan      html  css  js  c++  java
  • I2C裸机驱动程序设计

    ① I2C(Inter-Integrated Circuit)总线是由飞利浦公司开发的两线式串行总线,用于连接微控制器及其外围设备

    ② I2C总线有两根双向信号线

    (1)SDA:Serial Data Line(数据线)

    (2)SCL:Serial CLock Line(时钟线)

    ③ I2C总线寻址

    (1)I2C总线协议规定,从设备采用7位的地址。

      * D7~D0:从设备地址

      * D0位:数据的传送方向。“0”表示主设备向从设备写数据;“1”表示主设备由从设备读数据

      注:主设备发送地址时,总线上的每个从设备都将这7位地址与自己的地址进行比较,如果相同,则认为是自己正被主设备寻址,根据R/W位将自己确定为发送器或者接收器

    (2)从设备的地址由固定部分和用户自定义部分组成。

      * 固定部分:D7-D4 共4位。这是由从设备的生产厂商生产时就已确定的值。

      * 用户自定义部分:D3-D1 共3位。这3位通常对应设备的3个引脚(A0~A2)。把3个引脚接到不同的电平上,就可以形成一个3位的数值。

    ④ I2C总线时序

    (1)空闲状态:I2C总线总线的SDA和SCL两条信号线同时处于高电平时,规定为总线的空闲状态。

    (2)起始状态:在时钟线SCL保持高电平期间,数据线SDA上的电平被拉低(即负跳变),定义为I2C总线总线的启动信号,它标志着一次数据传输的开始

    (3)结束状态:在时钟线SCL保持高电平时,数据线SDA被释放,使得SDA返回高电平(即正跳变),称为I2C总线的停止信号

    (4)数据传送:I2C总线上的所有数据(地址和数据)都是以8位一个字节为单位传送的

    (5)应答位:发送器每发送一个字节,就在时钟脉冲第9位释放数据线,由接收器反馈一个应答信号。应答信号为低电平时,定为有效应答位ACK,表示接收器已经成功地接收了该字节;应答信号为高电平时,定为非应答位(NACK),表示接收器没有成功接收该字节

      注:I2C接口会在SCL为高电平期间对SDA状态进行采样,所以SDA高低位的变换应该在SCL是低电平期间完成。所以SDA的高电平脉冲要要比SCL略宽。

    ⑤ 基于S3C2440的I2C裸机代码:

    #include "GlobalDefine.h"
    #include "Error.h"
    #include "Common.h"
    #include "I2c.h"
    
    #include "ModManager.h"
    #include "../Protocol/inc/I2cProtocol.h"
    
    #define INTPND (*(volatile unsigned long*)0x4a000010)
    #define SRCPND (*(volatile unsigned long*)0x4a000000)
    #define INTMSK (*(volatile unsigned long*)0x4a000008)
    #define GPECON (*(volatile unsigned long*)0x56000040)
    #define GPEUP  (*(volatile unsigned long*)0x56000048)
    
    #define IICCON    (*(volatile unsigned char*)0x54000000)
    #define IICSTAT   (*(volatile unsigned char*)0x54000004)
    #define IICDS     (*(volatile unsigned char*)0x5400000C)
    
    #define SLAVE_WRITE_ADDR 0xa0
    #define SLAVE_READ_ADDR 0xa1
    
    static void I2cDelay(int i)
    {
       int j = 0;
       while (i--)    
       {
           for (j = 0; j < 100; j++)
           {    
               ;
           }  
       }    
    }
    
    static void I2cInit()
    {
        //1 Interrupt Initialize
        INTPND |= (1 << 27);
        SRCPND |= (1 << 27);  
        INTMSK &= ~(1 << 27);
         
        IICCON |= (1 << 5); 
        
        //2 Set I2C-Bus transmit clock
        IICCON &= ~(1 << 6);
        IICCON &= ~(0xf << 0);
        IICCON |= (0x5 << 0);
        
        //3. Set IIC-bus data output enable
        IICSTAT |= (1 << 4);
        
        //4. Set GPIO pin function
        GPECON |= (0x2 << 28)|(0x2 << 30);
        GPEUP |= (0x3 << 14);
        
        //5. Set IIC-bus acknowledge enable
        IICCON |= (1 << 7);
    }
    
    static void I2cWriteByte(unsigned char data, unsigned char addr)
    {    
        //1. Set to Master-Transmit mode
        IICSTAT |= (3 << 6);
        
        //2. Write slave device address
        IICDS = SLAVE_WRITE_ADDR;
        IICCON &= ~(1 << 4);
        
        //3. Write 0xF0 to IICSTAT.(Generate START signal) 
        IICSTAT = 0xF0;
        
        // Wait Ack
        while ((IICCON & (1 << 4)) == 0 )
            I2cDelay(100);
        
        //4. Write address in chip to IICDS
        IICDS = addr;
        IICCON &= ~(1 << 4);
        
        // Wait Ack
        while ((IICCON & (1 << 4)) == 0 )
            I2cDelay(100);
        
        //5. Write data to IICDS
        IICDS = data;
        IICCON &= ~(1 << 4);   
        
        // Wait Ack
        while ((IICCON & (1 << 4)) == 0 )
            I2cDelay(100);
        
        //6. Write 0xD0 to IICSTAT(Generate STOP signal)
        IICSTAT = 0xD0;
        
        //7. Clear Interrupt
        IICCON &= ~(1 << 4);    
        
        I2cDelay(100);
    }
    
    static void I2cReadBytes(unsigned char addr, int length, unsigned char *buf)
    {
        int j = 0;
        unsigned char unusedata;
        
        //1. Set to Master-Transmit mode
        IICSTAT |= (3 << 6);
        
        //2. Write slave device write address
        IICDS = SLAVE_WRITE_ADDR;
        IICCON &= ~(1 << 4);
        
        //3. Write 0xF0 to IICSTAT
        IICSTAT = 0xF0;
        
        //Wait ACK
        while ((IICCON & (1 << 4)) == 0 )
            I2cDelay(100);
        
        //4. Write address in the eeprom
        IICDS = addr;
        IICCON &= ~(1 << 4);
        
        // Wait ACK
        while ((IICCON & (1 << 4)) == 0 )
            I2cDelay(100);
                 
        //5. Set to Master-Receive mode
        IICSTAT &= ~(3 << 6);
        IICSTAT |= (2 << 6);
        
        //6. Write slave device read address
        IICDS = SLAVE_READ_ADDR;
        IICCON &= ~(1 << 4);
        
        //7. Write 0xB0 to IICSTAT for starting to receive
        IICSTAT = 0xb0;
        while ((IICCON & (1 << 4)) == 0 )
            I2cDelay(100);
        
        //8. Write address in chip
        IICDS = addr;
        IICCON &= ~(1 << 4);
        
        while((IICCON & (1 << 4)) == 0)
        {
            I2cDelay(100);
        }
      
        for(j = 0; j < length; j++)
        {
            if(j == (length - 1))
            {
               IICCON &= ~(1 << 7);         
            }
       
            buf[j] = IICDS;
            
            // Clear Interrupt
            IICCON &= ~(1 << 4);
        
            // Wait for Interrupt
            while ((IICCON & (1 << 4)) == 0 )
                I2cDelay(100);
        }
        
        //9. Write 0x90 to IICSTAT(Generate STOP signal)
        IICSTAT = 0x90;
        
        //10. Clear Interrupt
        IICCON &= ~(1 << 4);
    }
    
    I2cModeOps i2cModeOps = {
        .I2cInit = I2cInit,
        .I2cWriteByte = I2cWriteByte,
        .I2cReadBytes = I2cReadBytes,
    };
    
    MODULE_INSTALL(I2c, MOD_I2C, 0, &i2cModeOps);
  • 相关阅读:
    怎样写贪吃蛇小游戏?用100行python代码轻松解决!
    面试必问的celery,你了解多少?
    您的机器学习环保吗?一只AI训练排出180吨二氧化碳
    NLP技术应用到音乐领域,分分钟让你变成音乐大师!
    数据可视化“升级”修炼宝典
    一文掌握Python可视化库的两大王者
    多线程-模拟阻塞queue队列
    设计模式-单例模式
    多线程之wait,notify,volatile,synchronized,sleep
    spring与quartz整合
  • 原文地址:https://www.cnblogs.com/wulei0630/p/9582203.html
Copyright © 2011-2022 走看看