zoukankan      html  css  js  c++  java
  • CentOS 7 下使用虚拟环境Virtualenv安装Tensorflow cpu版记录

    1.首先安装pip-install

    在使用centos7的软件包管理程序yum安装python-pip的时候会报一下错误:

    No package python-pip available.
    Error: Nothing to do
    说没有python-pip软件包可以安装。

    这是因为像centos这类衍生出来的发行版,他们的源有时候内容更新的比较滞后,或者说有时候一些扩展的源根本就没有。所以在使用yum来search python-pip的时候,会说没有找到该软件包。
    因此为了能够安装这些包,需要先安装扩展源EPEL。EPEL(http://fedoraproject.org/wiki/EPEL) 是由 Fedora 社区打造,为 RHEL 及衍生发行版如 CentOS、Scientific Linux 等提供高质量软件包的项目。
    首先安装epel扩展源:

    sudo yum -y install epel-release
    

    然后安装python-pip:

    sudo yum -y install python-pip
    

    安装完之后别忘了清除一下cache:

    sudo yum clean all
    

    搞定!

    2.在隔离容器中安装TensorFlow

    推荐使用virtualenv 创建一个隔离的容器, 来安装 TensorFlow. 这是可选的, 但是这样做能使排查安装问
    题变得更容易,照着敲命令就行了

    安装主要分成下面四个步骤:
    ● Install pip and Virtualenv.(这一步装过了)
    ● Create a Virtualenv environment.
    ● Activate the Virtualenv environment and install TensorFlow in it.
    ● After the install you will activate the Virtualenv environment each time you want to use TensorFlow.
    Install pip and Virtualenv:
    # Ubuntu/Linux 64-bit

    $ sudo apt-get install python-pip python-dev python-virtualenv
    

    # Mac OS X

    $ sudo easy_install pip
    $ sudo pip install --upgrade virtualenv
    

    Create a Virtualenv environment in the directory ~/tensorflow:

    $ virtualenv --system-site-packages ~/tensorflow
    

    Activate the environment:

    $ source ~/tensorflow/bin/activate  # If using bash
    $ source ~/tensorflow/bin/activate.csh  # If using csh
    

    (tensorflow)$ # Your prompt should change

    Now, install TensorFlow just as you would for a regular Pip installation. First select the correct binary to install:
    # Ubuntu/Linux 64-bit, CPU only, Python 2.7

        (tensorflow)$ export TF_BINARY_URL=https://storage.googleapis.com/tensorflow/linux/cpu/tensorflow-0.10.0rc0-cp27-none-linux_x86_64.whl
    

    Finally install TensorFlow:
    # Python 2

    (tensorflow)$ pip install --upgrade $TF_BINARY_URL
    

    出现了如下错误:

    InstallationError: Command python setup.py egg_info failed with error code 1 in /root/tensorflow/build/mock
    

    解决方案是:
    Distribute has been merged into Setuptools as of version 0.7. If you are using a version <=0.6, upgrade using :

    pip install --upgrade setuptools 
    

    or

    easy_install -U setuptools.
    

    其实就是安装的egg需要升级一下把,我猜测

    升级之后重新 :

    (tensorflow)$ pip install --upgrade $TF_BINARY_URL
    

    等待一段时间,(我似乎看到tensorflow在用gcc编译c++,c,时间还挺长大概十来分钟)
    看到
    Successfully installed tensorflow protobuf six wheel mock numpy funcsigs pbr
    Cleaning up…
    就ok

    3.测试代码

    import tensorflow as tf
    import numpy as np
    # 使用 NumPy 生成假数据(phony data), 总共 100 个点.
    x_data = np.float32(np.random.rand(2, 100)) # 随机输入
    y_data = np.dot([0.100, 0.200], x_data) + 0.300
    
    # 构造一个线性模型
    b = tf.Variable(tf.zeros([1]))
    W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
    y = tf.matmul(W, x_data) + b
    
    # 最小化方差
    loss = tf.reduce_mean(tf.square(y - y_data))
    optimizer = tf.train.GradientDescentOptimizer(0.5)
    train = optimizer.minimize(loss)
    # 初始化变量
    init = tf.initialize_all_variables()
    # 启动图 (graph)
    sess = tf.Session()
    sess.run(init)
    # 拟合平面
    for step in xrange(0, 201):
            sess.run(train)
    if step % 20 == 0:
            print step, sess.run(W), sess.run(b)
    

    在命令行输入:

    source ~/tensorflow/bin/activate
    

    激活tensorflow环境,运行上述代码

    (tensorflow)[root@www test]# python nihe.py
    

    # 得到最佳拟合结果

      W: [[0.100 0.200]], b: [0.300]
    

    退出虚拟环境:

    (tensorflow)$ source deactivate
    

    参考文献

    https://github.com/tensorflow/tensorflow/blob/8cb0558da924e891aa1bb5d79a6c0c846301e4eb/tensorflow/g3doc/get_started/os_setup.md
    https://github.com/jikexueyuanwiki/tensorflow-zh
    http://www.tensorflow.org/(需要梯子)

  • 相关阅读:
    Linux终端以及bash
    初识VIM
    基础命令
    目录结构和命令
    Xshell连接Centos7.5和yum
    Linux的发展史和centos7的安装
    学习方法以及计算机硬件基础
    mysql、MariaDB的简单操作
    yum 软件管理器
    基础面试题
  • 原文地址:https://www.cnblogs.com/wuyida/p/6301250.html
Copyright © 2011-2022 走看看