zoukankan      html  css  js  c++  java
  • POJ 1458 Common Subsequence 【最长公共子序列】

    解题思路:先注意到序列和串的区别,序列不需要连续,而串是需要连续的,先由样例abcfbc         abfcab画一个表格分析,用dp[i][j]储存当比较到s1[i],s2[j]时最长公共子序列的长度

              a    b    f    c    a    b    

        0    0    0    0    0   0    0

    a  0    1     1    1    1   1    1

    b  0    1     2    2    2   2    2 

    c  0    1     2    2    3   3    3

    f  0     1     2    3    3   3   3

    b 0     1    2     3   3    3   4

    c  0     1    2     3   4   4    4

    其中 s1 abcfbc

           s2 abfcab

    以s1中的a来分析,用它与s2中的字母比较,如果相同,那么dp[i][j]=dp[i-1][j-1]+1(遇到相同的字母公共子序列的长度增加1)

                             如果不同的话,dp[i][j]=max(dp[i-1][j],dp[i][j-1])                 (即取相邻两种情况中的最大值)

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 39737   Accepted: 15977

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0
    #include<stdio.h>
    #include<string.h>
    #define maxn 10010
    int dp[maxn][maxn];
    
    int max(int a,int b)
    {
    	if(a>b)
    	return a;
    	else
    	return b;
    }
    int main()
    {
    	char s1[maxn],s2[maxn];
    	int len1,len2,i,j;
    	while(scanf("%s %s",&s1,&s2)!=EOF)
    	{
    	len1=strlen(s1);
    	len2=strlen(s2);
    	
    	for(i=1;i<=len1;i++)
    	{
    		for(j=1;j<=len2;j++)
    		if(s1[i-1]==s2[j-1])
    		dp[i][j]=dp[i-1][j-1]+1;
    		else
    		dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
    	}
    	printf("%d
    ",dp[len1][len2]);
        }
    	
    	
    	
    }
    

      

  • 相关阅读:
    Git的分支的clone、提交及删除
    Linux查找整个目录下包含关键词的文件并全局替换文件内容
    解决Mysql group_concat长度限制
    SQLSERVER建立MYSQL连接服务器
    批处理创建文件夹
    表分区常用脚本
    添加别名的重要性
    floor相关
    T-SQL 小数点转换百分数
    开启MSDTC
  • 原文地址:https://www.cnblogs.com/wuyuewoniu/p/4175044.html
Copyright © 2011-2022 走看看