zoukankan      html  css  js  c++  java
  • python AI换脸 用普氏分析法(Procrustes Analysis)实现人脸对齐

    1、图片效果

     

     2、原代码

    # !/usr/bin/python
    # -*- coding: utf-8 -*-
    # Copyright (c) 2015 Matthew Earl
    #
    # Permission is hereby granted, free of charge, to any person obtaining a copy
    # of this software and associated documentation files (the "Software"), to deal
    # in the Software without restriction, including without limitation the rights
    # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    # copies of the Software, and to permit persons to whom the Software is
    # furnished to do so, subject to the following conditions:
    #
    #     The above copyright notice and this permission notice shall be included
    #     in all copies or substantial portions of the Software.
    #
    #     THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
    #     OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
    #     MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
    #     NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
    #     DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
    #     OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
    #     USE OR OTHER DEALINGS IN THE SOFTWARE.
    
    """
    This is the code behind the Switching Eds blog post:
        http://matthewearl.github.io/2015/07/28/switching-eds-with-python/
    See the above for an explanation of the code below.
    To run the script you'll need to install dlib (http://dlib.net) including its
    Python bindings, and OpenCV. You'll also need to obtain the trained model from
    sourceforge:
        http://sourceforge.net/projects/dclib/files/dlib/v18.10/shape_predictor_68_face_landmarks.dat.bz2
    Unzip with `bunzip2` and change `PREDICTOR_PATH` to refer to this file. The
    script is run like so:
        ./faceswap.py <head image> <face image>
    If successful, a file `output.jpg` will be produced with the facial features
    from `<head image>` replaced with the facial features from `<face image>`.
    """
    
    import cv2
    import dlib
    import numpy
    
    import sys
    output = 'out3' # 输出图像名称
    sys.argv = ["isWap_faces.py", "./facesImage/head1.jpg", "./facesImage/head.jpg"]
    # PREDICTOR_PATH = "/home/matt/dlib-18.16/shape_predictor_68_face_landmarks.dat"
    PREDICTOR_PATH = "./model/shape_predictor_68_face_landmarks.dat"
    SCALE_FACTOR = 1
    FEATHER_AMOUNT = 11
    
    FACE_POINTS = list(range(17, 68))
    MOUTH_POINTS = list(range(48, 61))
    RIGHT_BROW_POINTS = list(range(17, 22))
    LEFT_BROW_POINTS = list(range(22, 27))
    RIGHT_EYE_POINTS = list(range(36, 42))
    LEFT_EYE_POINTS = list(range(42, 48))
    NOSE_POINTS = list(range(27, 35))
    JAW_POINTS = list(range(0, 17))
    
    # Points used to line up the images.
    ALIGN_POINTS = (LEFT_BROW_POINTS + RIGHT_EYE_POINTS + LEFT_EYE_POINTS +
                    RIGHT_BROW_POINTS + NOSE_POINTS + MOUTH_POINTS)
    
    # Points from the second image to overlay on the first. The convex hull of each
    # element will be overlaid.
    OVERLAY_POINTS = [
        LEFT_EYE_POINTS + RIGHT_EYE_POINTS + LEFT_BROW_POINTS + RIGHT_BROW_POINTS,
        NOSE_POINTS + MOUTH_POINTS,
    ]
    
    # Amount of blur to use during colour correction, as a fraction of the
    # pupillary distance.
    COLOUR_CORRECT_BLUR_FRAC = 0.4
    
    detector = dlib.get_frontal_face_detector()
    predictor = dlib.shape_predictor(PREDICTOR_PATH)
    
    
    class TooManyFaces(Exception):
        pass
    
    
    class NoFaces(Exception):
        pass
    
    
    def get_landmarks(im):
        rects = detector(im, 1)
    
        if len(rects) > 1:
            raise TooManyFaces
        if len(rects) == 0:
            raise NoFaces
    
        return numpy.matrix([[p.x, p.y] for p in predictor(im, rects[0]).parts()])
    
    
    def annotate_landmarks(im, landmarks):
        im = im.copy()
        for idx, point in enumerate(landmarks):
            pos = (point[0, 0], point[0, 1])
            cv2.putText(im, str(idx), pos,
                        fontFace=cv2.FONT_HERSHEY_SCRIPT_SIMPLEX,
                        fontScale=0.4,
                        color=(0, 0, 255))
            cv2.circle(im, pos, 3, color=(0, 255, 255))
        return im
    
    
    def draw_convex_hull(im, points, color):
        points = cv2.convexHull(points)
        cv2.fillConvexPoly(im, points, color=color)
    
    
    def get_face_mask(im, landmarks):
        im = numpy.zeros(im.shape[:2], dtype=numpy.float64)
    
        for group in OVERLAY_POINTS:
            draw_convex_hull(im,
                             landmarks[group],
                             color=1)
    
        im = numpy.array([im, im, im]).transpose((1, 2, 0))
    
        im = (cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0) > 0) * 1.0
        im = cv2.GaussianBlur(im, (FEATHER_AMOUNT, FEATHER_AMOUNT), 0)
    
        return im
    
    
    def transformation_from_points(points1, points2):
        """
        Return an affine transformation [s * R | T] such that:
            sum ||s*R*p1,i + T - p2,i||^2
        is minimized.
        """
        # Solve the procrustes problem by subtracting centroids, scaling by the
        # standard deviation, and then using the SVD to calculate the rotation. See
        # the following for more details:
        #   https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
    
        points1 = points1.astype(numpy.float64)
        points2 = points2.astype(numpy.float64)
    
        c1 = numpy.mean(points1, axis=0)
        c2 = numpy.mean(points2, axis=0)
        points1 -= c1
        points2 -= c2
    
        s1 = numpy.std(points1)
        s2 = numpy.std(points2)
        points1 /= s1
        points2 /= s2
    
        U, S, Vt = numpy.linalg.svd(points1.T * points2)
    
        # The R we seek is in fact the transpose of the one given by U * Vt. This
        # is because the above formulation assumes the matrix goes on the right
        # (with row vectors) where as our solution requires the matrix to be on the
        # left (with column vectors).
        R = (U * Vt).T
    
        return numpy.vstack([numpy.hstack(((s2 / s1) * R,
                                           c2.T - (s2 / s1) * R * c1.T)),
                             numpy.matrix([0., 0., 1.])])
    
    
    def read_im_and_landmarks(fname):
        im = cv2.imread(fname, cv2.IMREAD_COLOR)
        im = cv2.resize(im, (im.shape[1] * SCALE_FACTOR,
                             im.shape[0] * SCALE_FACTOR))
        s = get_landmarks(im)
    
        return im, s
    
    
    def warp_im(im, M, dshape):
        output_im = numpy.zeros(dshape, dtype=im.dtype)
        cv2.warpAffine(im,
                       M[:2],
                       (dshape[1], dshape[0]),
                       dst=output_im,
                       borderMode=cv2.BORDER_TRANSPARENT,
                       flags=cv2.WARP_INVERSE_MAP)
        return output_im
    
    
    def correct_colours(im1, im2, landmarks1):
        blur_amount = COLOUR_CORRECT_BLUR_FRAC * numpy.linalg.norm(
            numpy.mean(landmarks1[LEFT_EYE_POINTS], axis=0) -
            numpy.mean(landmarks1[RIGHT_EYE_POINTS], axis=0))
        blur_amount = int(blur_amount)
        if blur_amount % 2 == 0:
            blur_amount += 1
        im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
        im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
    
        # Avoid divide-by-zero errors.
        im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)
    
        return (im2.astype(numpy.float64) * im1_blur.astype(numpy.float64) /
                im2_blur.astype(numpy.float64))
    
    
    im1, landmarks1 = read_im_and_landmarks(sys.argv[1])
    im2, landmarks2 = read_im_and_landmarks(sys.argv[2])
    
    M = transformation_from_points(landmarks1[ALIGN_POINTS],
                                   landmarks2[ALIGN_POINTS])
    
    mask = get_face_mask(im2, landmarks2)
    warped_mask = warp_im(mask, M, im1.shape)
    combined_mask = numpy.max([get_face_mask(im1, landmarks1), warped_mask],
                              axis=0)
    
    warped_im2 = warp_im(im2, M, im1.shape)
    warped_corrected_im2 = correct_colours(im1, warped_im2, landmarks1)
    
    output_im = im1 * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask
    
    cv2.imwrite('./outImage/{}.jpg'.format(output), output_im)
    

      

    3、目录结构

  • 相关阅读:
    JS定时循环
    JS分组
    中位数 题解
    NOIP2017 D2T3 题解
    CF949E Binary Cards 题解
    友善的树形DP
    300英雄的危机(heroes)
    [北京省选集训2019]图的难题 题解
    洛谷 P1268 树的重量 题解
    洛谷 P2633 Count on a tree 题解
  • 原文地址:https://www.cnblogs.com/wuzaipei/p/11706189.html
Copyright © 2011-2022 走看看