给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/rotate-image
旋转四个矩形
按顺时针的顺序去覆盖前面的数字,从四个顶角开始,然后往中间去遍历,每次覆盖的坐标都是同理,如下:
(i, j) <- (n-1-j, i) <- (n-1-i, n-1-j) <- (j, n-1-i)
这其实是个循环的过程,第一个位置又覆盖了第四个位置,这里i的取值范围是 [0, n/2),j的取值范围是 [i, n-1-i),至于为什么i和j是这个取值范围,为啥i不用遍历 [n/2, n),若仔细观察这些位置之间的联系,不难发现,实际上j列的范围 [i, n-1-i) 顺时针翻转 90 度,正好就是i行的 [n/2, n) 的位置,这个方法每次循环换四个数字,如下所示:
1 2 3 7 2 1 7 4 1
4 5 6 --> 4 5 6 --> 8 5 2
7 8 9 9 8 3 9 6 3
java
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < n / 2 + n % 2; i++) {
for (int j = 0; j < n / 2; j++) {
int[] tmp = new int[4];
int row = i;
int col = j;
for (int k = 0; k < 4; k++) {
tmp[k] = matrix[row][col];
int x = row;
row = col;
col = n - 1 - x;
}
for (int k = 0; k < 4; k++) {
matrix[row][col] = tmp[(k + 3) % 4];
int x = row;
row = col;
col = n - 1 - x;
}
}
}
}
}
python
class Solution:
def rotate(self, matrix):
n = len(matrix[0])
for i in range(n // 2 + n % 2):
for j in range(n // 2):
tmp = [0] * 4
row, col = i, j
# store 4 elements in tmp
for k in range(4):
tmp[k] = matrix[row][col]
row, col = col, n - 1 - row
# rotate 4 elements
for k in range(4):
matrix[row][col] = tmp[(k - 1) % 4]
row, col = col, n - 1 - row
旋转四个矩阵(改进)
c++
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n / 2; ++i) {
for (int j = i; j < n - 1 - i; ++j) {
int tmp = matrix[i][j];
matrix[i][j] = matrix[n - 1 - j][i];
matrix[n - 1 - j][i] = matrix[n - 1 - i][n - 1 - j];
matrix[n - 1 - i][n - 1 - j] = matrix[j][n - 1 - i];
matrix[j][n - 1 - i] = tmp;
}
}
}
};
java
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
for (int i = 0; i < (n + 1) / 2; i ++) {
for (int j = 0; j < n / 2; j++) {
int temp = matrix[n - 1 - j][i];
matrix[n - 1 - j][i] = matrix[n - 1 - i][n - j - 1];
matrix[n - 1 - i][n - j - 1] = matrix[j][n - 1 -i];
matrix[j][n - 1 - i] = matrix[i][j];
matrix[i][j] = temp;
}
}
}
}
python
class Solution:
def rotate(self, matrix):
n = len(matrix[0])
for i in range(n // 2 + n % 2):
for j in range(n // 2):
tmp = matrix[n - 1 - j][i]
matrix[n - 1 - j][i] = matrix[n - 1 - i][n - j - 1]
matrix[n - 1 - i][n - j - 1] = matrix[j][n - 1 -i]
matrix[j][n - 1 - i] = matrix[i][j]
matrix[i][j] = tmp
对角线加上下翻转
首先以从对角线为轴翻转,然后再以x轴中线上下翻转即可得到结果,如下图所示
1 2 3 9 6 3 7 4 1
4 5 6 --> 8 5 2 --> 8 5 2
7 8 9 7 4 1 9 6 3
c++
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n - 1; ++i) {
for (int j = 0; j < n - i; ++j) {
swap(matrix[i][j], matrix[n - 1- j][n - 1 - i]);
}
}
reverse(matrix.begin(), matrix.end());
}
};
转置加翻转
首先对原数组取其转置矩阵,然后把每行的数字翻转可得到结果,如下所示:
1 2 3 1 4 7 7 4 1
4 5 6 --> 2 5 8 --> 8 5 2
7 8 9 3 6 9 9 6 3
c++
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
for (int i = 0; i < n; ++i) {
for (int j = i + 1; j < n; ++j) {
swap(matrix[i][j], matrix[j][i]);
}
reverse(matrix[i].begin(), matrix[i].end());
}
}
};
java
class Solution {
public void rotate(int[][] matrix) {
int n = matrix.length;
// transpose matrix
for (int i = 0; i < n; i++) {
for (int j = i; j < n; j++) {
int tmp = matrix[j][i];
matrix[j][i] = matrix[i][j];
matrix[i][j] = tmp;
}
}
// reverse each row
for (int i = 0; i < n; i++) {
for (int j = 0; j < n / 2; j++) {
int tmp = matrix[i][j];
matrix[i][j] = matrix[i][n - j - 1];
matrix[i][n - j - 1] = tmp;
}
}
}
}
python
class Solution:
def rotate(self, matrix):
"""
:type matrix: List[List[int]]
:rtype: void Do not return anything, modify matrix in-place instead.
"""
n = len(matrix[0])
# transpose matrix
for i in range(n):
for j in range(i, n):
matrix[j][i], matrix[i][j] = matrix[i][j], matrix[j][i]
# reverse each row
for i in range(n):
matrix[i].reverse()