T1
思路
裸地等比数列求和。然而考试的时候并不会。学会了一种很nb的等比数列求和的方法。
假如我们要求(sumlimits_{i = 1}^n{x^i}),那么我们设(P=sumlimits_{i = 1}^n{x^i}),容易发现,P的x进制表示就是1111....111,共m个1,然后我们考虑(Q=x^{m+1})的x进制表示,就是1000....000,共m个0。然后将Q-1求出来。就是(overline{(x-1)(x-1)...(x-1)}_x)然后求出(frac{Q-1}{x-1})就可以了,因为要取模,所以求个逆元就好了。
真正的等比数列求和公式
$$S_n=frac{a_1*(1-q^n)}{(1-q)}(q为公比)$$
代码
#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
ll qm(ll x,int y) {
ll ans = 1;
for(;y;y >>= 1,x = x * x % mod)
if(y & 1) ans = ans * x % mod;
return ans;
}
int main() {
freopen("sum.in","r",stdin);
freopen("sum.out","w",stdout);
int n = read(),m = read();
ll ans = 0;
ans = m;
for(int i = 2;i <= n;++i) {
ll k = (qm(i,m + 1) - 1 + mod) % mod;
k *= qm(i - 1,mod - 2);
k %= mod;
k = (k - 1) % mod;
ans = (ans + k) % mod;
}
cout<<ans;
return 0;
}
T2
思路
其实并不难,仔细一想就可以发现其实就是将整棵树的边权之和乘以2,然后减去距离根结点最远的点与根节点的距离
代码
#include<cstdio>
#include<queue>
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 50010;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
struct node{
int v,nxt,w;
}e[N * 2];
int dis[N],ejs,head[N];
void add(int u,int v,int w) {
e[++ejs].v = v;e[ejs].w = w; e[ejs].nxt = head[u];head[u] = ejs;
}
int ans,Max = 0;
queue<int>q;
int vis[N];
void bfs() {
while(!q.empty()) q.pop();
dis[1] = 0;
q.push(1);
vis[1] = 1;
while(!q.empty()) {
int u = q.front();
q.pop();
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(vis[v]) continue;
dis[v] = dis[u] + e[i].w;
Max = max(Max,dis[v]);
q.push(v);
vis[v] = 1;
}
}
}
int main() {
freopen("tour.in","r",stdin);
freopen("tour.out","w",stdout);
int n = read();
for(int i = 1;i < n;++i) {
int u = read(),v = read(),w = read();
add(u,v,w);
add(v,u,w);
ans += w * 2;
}
bfs();
cout<<ans - Max;
return 0;
}
T3
思路
发现其实只有数组中的幸运数字才是有贡献的。所以可以先把这些数字提取出来,然后dp。用f[i][j]表示前i种幸运数字中,选j种的方案数。最后统计一下答案。
代码
#include<cstdio>
#include<iostream>
#include<map>
#define int ll
using namespace std;
typedef long long ll;
const int N = 100000 + 100;
const int mod = 1e9 + 7;
map<int,int>ma;
ll read() {
ll x = 0,f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
x = x * 10 + c - '0';
c = getchar();
}
return x * f;
}
ll jc[N],inv[N],tot,a[N],OK[N];
ll qm(ll x,int y) {
ll ans = 1;
for(;y;y >>= 1,x = x * x % mod)
if(y & 1) ans = ans * x % mod;
return ans;
}
ll C(ll x,ll y) {
return (ll)jc[x] * (ll)inv[y] % mod * (ll)inv[x-y] % mod;
}
int pd(int x) {
while(x) {
if(x % 10 != 4 && x % 10 != 7) return 0;
x/=10;
}
return 1;
}
int f[2100][2100];
signed main() {
freopen("lucky.in","r",stdin);
freopen("lucky.out","w",stdout);
int n = read(),K = read();
for(int i = 1;i <= n;++i) a[i] = read();
jc[0] = 1;
for(int i = 1;i <= n;++i) jc[i] = (ll)jc[i - 1] * (ll)i % mod;
inv[n] = qm(jc[n],mod - 2);
for(int i = n - 1;i >= 0; --i) inv[i] = (ll)inv[i + 1] * (i + 1) % mod;
int cnt = 0;
for(int i = 1;i <= n;++i) {
if(pd(a[i])) {
if(!ma[a[i]])
OK[++tot] = a[i];
ma[a[i]]++;
}
else cnt++;
}
f[0][0] = 1;
for(int i = 1;i <= tot;++i) {
f[i][0] = 1;
for(int j = 1;j <= tot; ++j) {
f[i][j] = (f[i-1][j] + f[i-1][j - 1] * ma[OK[i]] % mod) % mod;
}
}
ll ans = 0;
for(int i = 0;i <= tot;++i) {
ans += (ll)f[tot][i] * C(cnt,K-i) % mod;
ans >= mod ? ans -= mod : 0;
}
cout<<ans;
return 0;
}
总结
预计得分50 + 100 +100 = 250
实际得分50 + 100 + 50 = 200
最后一个题想了一个假的容斥实力坑自己。还能跟暴力拍过去。。。。t1不会,还是有太多坑要填
一言
既然我找不到你,只好站在显眼的地方让你找到了。 ——何以笙箫默