zoukankan      html  css  js  c++  java
  • 数据结构和算法系列-------- 图

    原文地址

    http://www.cnblogs.com/mcgrady/archive/2013/09/23/3335847.html#_label2

    阅读目录

    这一篇我们要总结的是图(Graph),图可能比我们之前学习的线性结构和树形结构都要复杂,不过没有关系,我们一点一点地来总结,那么关于图我想从以下几点进行总结:

    1,图的定义?

    2,图相关的概念和术语?

    3,图的创建和遍历?

    4,最小生成树和最短路径?

    5,算法实现?

    一,图的定义

    什么是图呢?

    图是一种复杂的非线性结构。

    在线性结构中,数据元素之间满足唯一的线性关系,每个数据元素(除第一个和最后一个外)只有一个直接前趋和一个直接后继;

    在树形结构中,数据元素之间有着明显的层次关系,并且每个数据元素只与上一层中的一个元素(双亲节点)及下一层的多个元素(孩子节点)相关;

    而在图形结构中,节点之间的关系是任意的,图中任意两个数据元素之间都有可能相关。

    图G由两个集合V(顶点Vertex)和E(边Edge)组成,定义为G=(V,E)


    二,图相关的概念和术语

    1,无向图和有向图

    对于一个图,若每条边都是没有方向的,则称该图为无向图。图示如下:

    ds54

    因此,(Vi,Vj)和(Vj,Vi)表示的是同一条边。注意,无向图是用小括号,而下面介绍的有向图是用尖括号。

    无向图的顶点集和边集分别表示为:

    V(G)={V1,V2,V3,V4,V5}

    E(G)={(V1,V2),(V1,V4),(V2,V3),(V2,V5),(V3,V4),(V3,V5),(V4,V5)}

    对于一个图G,若每条边都是有方向的,则称该图为有向图。图示如下。

    ds55

    因此,<Vi,Vj>和<Vj,Vi>是两条不同的有向边。注意,有向边又称为弧。

    有向图的顶点集和边集分别表示为:

    V(G)={V1,V2,V3}

    E(G)={<V1,V2>,<V2,V3>,<V3,V1>,<V1,V3>}

    2,无向完全图和有向完全图

    我们将具有n(n-1)/2条边的无向图称为无向完全图。同理,将具有n(n-1)条边的有向图称为有向完全图。

    3,顶点的度

    对于无向图,顶点的度表示以该顶点作为一个端点的边的数目。比如,图(a)无向图中顶点V3的度D(V3)=3

    对于有向图,顶点的度分为入度和出度。入度表示以该顶点为终点的入边数目,出度是以该顶点为起点的出边数目,该顶点的度等于其入度和出度之和。比如,顶点V1的入度ID(V1)=1,出度OD(V1)=2,所以D(V1)=ID(V1)+OD(V1)=1+2=3

    记住,不管是无向图还是有向图,顶点数n,边数e和顶点的度数有如下关系:

    clip_image002

    因此,就拿有向图(b)来举例,由公式可以得到图G的边数e=(D(V1)+D(V2)+D(V3))/2=(3+2+3)/2=4

    4,子图

    故名思义,这个就不解释了。

    5,路径,路径长度和回路

    路径,比如在无向图G中,存在一个顶点序列Vp,Vi1,Vi2,Vi3…,Vim,Vq,使得(Vp,Vi1),(Vi1,Vi2),…,(Vim,Vq)均属于边集E(G),则称顶点Vp到Vq存在一条路径。

    路径长度,是指一条路径上经过的边的数量。

    回路,指一条路径的起点和终点为同一个顶点。

    6,连通图(无向图)

    连通图是指图G中任意两个顶点Vi和Vj都连通,则称为连通图。比如图(b)就是连通图。下面是一个非连通图的例子。

    ds56

    上图中,因为V5和V6是单独的,所以是非连通图。

    7,强连通图(有向图)

    强连通图是对于有向图而言的,与无向图的连通图类似。

    8,网

    带”权值”的连通图称为网。如图所示。

    ds57

    三,图的创建和遍历

    1,图的两种存储结构

    1) 邻接矩阵,原理就是用两个数组,一个数组保存顶点集,一个数组保存边集。下面的算法实现里边我们也是采用这种存储结构。如下图所示:

    ds58

    2) 邻接表,邻接表是图的一种链式存储结构。这种存储结构类似于树的孩子链表。对于图G中每个顶点Vi,把所有邻接于Vi的顶点Vj链成一个单链表,这个单链表称为顶点Vi的邻接表。

    2,图的两种遍历方法

    1) 深度优先搜索遍历 (这里的解释我没太懂,最起码读第一遍没懂)

    深度优先搜索DFS遍历类似于树的前序遍历。其基本思路是:

    a) 假设初始状态是图中所有顶点都未曾访问过,则可从图G中任意一顶点v为初始出发点,首先访问出发点v,并将其标记为已访问过。

    b) 然后依次从v出发搜索v的每个邻接点w,若w未曾访问过,则以w作为新的出发点出发,继续进行深度优先遍历,直到图中所有和v有路径相通的顶点都被访问到。

    c) 若此时图中仍有顶点未被访问,则另选一个未曾访问的顶点作为起点,重复上述步骤,直到图中所有顶点都被访问到为止。

    图示如下:

    ds59

    注:红色数字代表遍历的先后顺序,所以图(e)无向图的深度优先遍历的顶点访问序列为:V0,V1,V2,V5,V4,V6,V3,V7,V8

    如果采用邻接矩阵存储,则时间复杂度为O(n2);当采用邻接表时时间复杂度为O(n+e)。

    2) 广度优先搜索遍历

    广度优先搜索遍历BFS类似于树的按层次遍历。其基本思路是:

    a) 首先访问出发点Vi

    b) 接着依次访问Vi的所有未被访问过的邻接点Vi1,Vi2,Vi3,…,Vit并均标记为已访问过。

    c) 然后再按照Vi1,Vi2,… ,Vit的次序,访问每一个顶点的所有未曾访问过的顶点并均标记为已访问过,依此类推,直到图中所有和初始出发点Vi有路径相通的顶点都被访问过为止。

    图示如下:

    ds60

    因此,图(f)采用广义优先搜索遍历以V0为出发点的顶点序列为:V0,V1,V3,V4,V2,V6,V8,V5,V7

    如果采用邻接矩阵存储,则时间复杂度为O(n2),若采用邻接表,则时间复杂度为O(n+e)。

    四,最小生成树和最短路径

    1,最小生成树

    什么是最小生成树呢?在弄清什么是最小生成树之前,我们需要弄清什么是生成树?

    用一句语简单概括生成树就是:生成树是将图中所有顶点以最少的边连通的子图。

    比如图(g)可以同时得到两个生成树图(h)和图(i)

    ds61

    知道了什么是生成树之后,我们就很容易理解什么是最小生成树了。所谓最小生成树,用一句话总结就是:权值和最小的生成树就是最小生成树

    比如上图中的两个生成树,生成树1和生成树2,生成树1的权值和为:12,生成树2的权值为:14,我们可以证明图(h)生成树1就是图(g)的最小生成树。

    那么如何构造最小生成树呢?可以使用普里姆算法。

    2,最短路径

    求最短路径也就是求最短路径长度。下面是一个带权值的有向图,表格中分别列出了顶点V1其它各顶点的最短路径长度。

    ds62

    源点 最短路径 终点   路径长度
    V1 V1,V3,V2 V2 中转 5
    V1 V1,V3 V3 直达 3
    V1 V1,V3,V2,V4 V4 中转 10
    V1 V1,V3,V5 V5 中转 18

    表:顶点V1到其它各顶点的最短路径表

    从图中可以看出,顶点V1到V4的路径有3条(V1,V2,V4),(V1,V4),(V1,V3,V2,V4),其路径长度分别为15,20和10,因此,V1到V4的最短路径为(V1,V3,V2,V4)。

    那么如何求带权有向图的最短路径长度呢?可以使用迪杰斯特拉(Dijkstra)算法。

  • 相关阅读:
    centos7查看yum安装的软件及路径
    CentOS7图形界面与命令行界面切换(转载)
    vmware安装centos7
    如何在IE11中设置兼容模式?设置的具体方法
    docker批量删除容器、镜像
    在Linux Centos 7.2 上安装指定版本Docker 17.03
    如何避免命令 rm -rf 的悲剧
    python django整理(五)配置favicon.ico,解决警告Not Found: /favicon.ico(转载)
    Ubuntu终端命令行缩短显示路径
    virtualenv 虚拟环境依赖安装
  • 原文地址:https://www.cnblogs.com/wyuzl/p/6529460.html
Copyright © 2011-2022 走看看