CF1151FSonya and Informatics
给一个长度为 n$ (nleq 100)$的 (0/1) 串,进行 k((k leq 10^9))次操作,每次操作选择两个位置 ((i,j))((i < j)),交换$ i,j$ 上的数,求 (k) 次操作后,该 (0/1) 串变成非降序列的概率,答案对 (10^9+7) 取模。
首先这道题目我们可以想出来一下比较朴素的DP
我们设(sum_0)为原列中(0)个数
我们发现我们不关心序列长什么样子
只关心前(sum_0)个数中(0)个个数
设(f_{i,j})表示前(i)次操作之后,还有(j)个(0)的方案数
概率可以转化为
[frac{f_{k,sum_0}}{sum_{i = 0}^{sum_0} f_{k,i}}
]
转移就是
设(c = frac{n*(n - 1)}{2})表示总的可能情况
[f_{i,j} += f_{i - 1,j - 1}+(sum_0 - (j - 1)) * (sum_0 - (j - 1))
]
把一个前面的(1)换成(0)前部分有(sum_0- (j - 1))个(1),后一部分有(sum_0 - (j - 1))个(0),两两配对的方案数
[f_{i,j} += f_{i - 1,j + 1} + (j + 1) * (sum_1 - (sum_0 - (j + 1)))
]
把一个前面的(0)换成(1),组合意义类似上面
[f_{i,j} += f_{i - 1,j} + (c - v_1 - v_2)
]
(v_1,v_2)就是上面两个式子的后面部分
表示没有对前面的(0)的数目产生影响
这之后我们观察一下这个转移每次转移只和(j)有关
我们考虑使用矩阵去优化这个东西
[left[egin{array}{ccccc}{f_{0}[0]} & {f_{-1}[1]} & {0} & {dots} & {0} \ {f_{+1}[0]} & {f_{0}[1]} & {f_{-1}[2]} & {dots} & {0} \ {0} & {f_{+1}[1]} & {f_{0}[2]} & {dots} & {0} \ {dots} & {dots} & {dots} & {dots} & {dots}\{0}&{0}&{0}&{dots} &{f_0[n]}end{array}
ight]
left[egin{array}{c}{d p[0]} \ {d p[1]} \ {d p[2]} \ {cdots} \ {d p[n]}end{array}
ight]=left[egin{array}{c}{d p[0]} \ {d p[1]} \ {d p[2]} \ {cdots} \ {d p[n]}end{array}
ight]
]
大约是这个样子
我们这样就完成了一次转移
(k)很大
我们直接上矩阵快速幂就可以了
(mathcal{O}left(n^{3} log k ight))
#include<cstdio>
#include<iostream>
#include<queue>
#include<algorithm>
#include<cstring>
#include<cctype>
#include<vector>
#include<ctime>
#include<cmath>
#define LL long long
#define pii pair<int,int>
#define mk make_pair
#define fi first
#define se second
using namespace std;
const int N = 105;
const LL mod = 1e9 + 7;
int n,k;
int a[N];
LL sum0,sum1;
inline int read(){
int v = 0,c = 1;char ch = getchar();
while(!isdigit(ch)){
if(ch == '-') c = -1;
ch = getchar();
}
while(isdigit(ch)){
v = v * 10 + ch - 48;
ch = getchar();
}
return v * c;
}
inline LL up(LL x){
if(x >= mod) x -= mod;
return x;
}
inline LL down(LL x){
if(x < 0) x += mod;
return x;
}
struct Ma{
LL a[N][N];
LL *operator[](int i){return a[i];}
inline void clear(){memset(a,0,sizeof(a));}
friend Ma operator * (Ma x,Ma y){
Ma c;c.clear();
for(int i = 0;i <= n;++i)
for(int j = 0;j <= n;++j)
for(int k = 0;k <= n;++k)
c.a[i][j] = (c.a[i][j] + (x.a[i][k] * y.a[k][j])) % mod;
return c;
}
};
Ma s,ss;
inline Ma quick(Ma x,int y){
Ma res;
for(int i = 0;i <= n;++i) res[i][i] = 1;
while(y){
if(y & 1) res = res * x;
y >>= 1;
x = x * x;
}
return res;
}
Ma dp;
LL inv;
inline LL p3(LL x){
return x * (sum0 - (sum1 - x)) % mod;
}
inline LL p2(LL x){
LL v1 = sum1 * (sum1 - 1) / 2;
LL v2 = sum0 * (sum0 - 1) / 2;
LL v3 = x * (sum1 - x) % mod;
LL v4 = (sum1 - x) * (sum0 - (sum1 - x)) % mod;
return (v1 + v2 + v3 + v4) % mod;
}
inline LL p1(LL x){
return (sum1 - x) * (sum1 - x) % mod;
}
inline LL quickmul(LL x,LL y){
LL res = 1;
while(y){
if(y & 1) res = res * x % mod;
x = x * x % mod;
y >>= 1;
}
return res;
}
int main(){
n = read(),k = read();
for(int i = 1;i <= n;++i){
a[i] = read() ^ 1;
sum0 += (a[i] == 0);
sum1 += (a[i] == 1);
}
LL t = 0;
for(int i = 1;i <= sum1;++i) t += (a[i] == 1);
dp[t][0] = 1;
for(int i = 0;i <= sum1;++i){
if(i > 0) ss.a[i][i - 1] = p1(i - 1);
ss.a[i][i] = p2(i);
if(i + 1 <= sum1) ss.a[i][i + 1] = p3(i + 1);
}
Ma ans = quick(ss,k) * dp;
Ma aa = quick(ss,k);
LL res = 0;
for(int i = 0;i <= sum1;++i) res = (res + ans[i][0]) % mod;
printf("%lld
",ans[sum1][0] * quickmul(res,mod - 2) % mod);
return 0;
}